

Managing Complexity of Control Software
through Concurrency

ISBN 90-365-2204-8

Printed by Ipskamp Enschede, the Netherlands

Cover design: Gerald Hilderink
Cover art: Leny Bilderbeek-Wilens

© G.H. Hilderink, Enschede, 2005

No part of this work may be reproduced by print, photocopy, or any other
means without the permission in writing from the publisher.

MANAGING COMPLEXITY OF CONTROL
SOFTWARE THROUGH CONCURRENCY

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof. dr. W.H.M. Zijm,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op donderdag 19 mei 2005 om 15.00 uur

door

Gerald Henk Hilderink

geboren op 23 september 1968
te Haaksbergen

Dit proefschrift is goedgekeurd door

Prof.dr.ir. J. van Amerongen promotor

Dr.ir. J.F. Broenink assistent-promotor

Contents

Voorwoord ... ix

Summary... xi

Samenvatting.. xiii

1 Introduction .. 1

1.1 Concurrency and complexities in embedded control
software .. 1

1.2 Scope of subject ... 3

1.2.1 Embedded control.. 3

1.2.2 Computer-aided design tools... 6

1.2.3 Multithreading.. 7

1.2.4 Occam and Transputer .. 9

1.2.5 THESIS ... 10

1.3 Aim of research ... 12

1.4 Research approach.. 14

1.4.1 Complexity .. 14

1.4.2 Concurrency.. 15

1.4.3 Communicating Sequential Processes 18

1.4.4 Strategy .. 20

1.5 Overview of thesis .. 21

2 A Structured Approach to Embedded Control Systems
Implementation.. 23

2.1 Introduction ... 23

 Contents ii

2.2 Conceptual design for controller software of mechatronic
systems ... 25

2.2.1 Multidisciplinary design approach 25

2.2.2 Control system design trajectory ... 27

2.2.3 Stepwise refinement... 36

2.3 Processes are in control .. 38

2.3.1 Processes.. 38

2.3.2 Identification of processes .. 39

2.3.3 Process Analysis ... 41

2.3.4 Process Architecture Design... 42

2.4 The THESIS method ... 44

2.5 Conclusions.. 47

3 Graphical Modelling Language for Specifying Concurrency
based on CSP .. 49

3.1 Introduction ... 49

3.2 Processes and objects.. 51

3.3 The CSP diagram .. 53

3.4 Interrelationships .. 56

3.5 Communication relationships... 58

3.5.1 Channel communication ... 59

3.5.2 Barrier communication.. 65

3.5.3 State Communication .. 66

3.5.4 Process interface ... 71

3.6 Compositional relationships ... 75

3.6.1 Automaton .. 76

3.6.2 Sequential relationships .. 77

3.6.3 Parallel relationships ... 80

Contents iii

3.6.4 Alternative relationships... 84

3.6.5 Exception relationships ... 90

3.6.6 Anonymous repetitions... 92

3.6.7 Aliases .. 95

3.6.8 Primitive communication processes 96

3.7 Hierarchies ... 102

3.7.1 Ambiguity and Unambiguity... 102

3.7.2 Indexed parenthesizing relationships............................... 105

3.7.3 Compositional undefined relationships 106

3.7.4 Deep hierarchies versus flat hierarchies........................... 107

3.8 Analysis techniques and rules .. 113

3.8.1 State communication rules.. 113

3.8.2 Reallocation rules ... 114

3.8.3 Balanced and unbalanced parenthesized cycles 118

3.8.4 Compositional conflicts... 120

3.8.5 Companionship between communication and
composition... 125

3.9 Design freedom ... 127

3.10 Refinement and verification.. 128

3.11 Conclusions.. 129

4 A CSP library for compositional programming of concurrent
software.. 133

4.1 Introduction ... 133

4.2 Approach and background ... 134

4.2.1 CT object model.. 134

4.2.2 Java thread model .. 135

4.2.3 Communicating Threads for Java...................................... 136

 Contents iv

4.2.4 Aspects... 136

4.3 Processes... 139

4.3.1 Process instance interface.. 140

4.3.2 Process communication interface 142

4.4 Channels... 143

4.4.1 Synchronization.. 143

4.4.2 Scheduling... 144

4.4.3 Message delivery.. 144

4.4.4 Data channels.. 145

4.4.5 Call channels ... 154

4.5 Barriers.. 156

4.6 Compositional constructs .. 158

4.6.1 The parallel construct .. 159

4.6.2 The sequential construct ... 163

4.6.3 The alternative construct... 164

4.6.4 The exception handling construct 171

4.6.5 Nested compositional constructs....................................... 178

4.7 Timing and Sampling... 179

4.7.1 Timed communication events .. 180

4.7.2 System services ... 181

4.7.3 Thread services ... 184

4.7.4 Example real-time timing ... 185

4.8 Conclusions.. 191

5 Notion of priorities.. 193

5.1 Introduction ... 193

5.2 Priority relationship ... 194

Contents v

5.3 Equally- and unequally-prioritized parallel constructs.............. 196

5.4 The priority inversion problem .. 198

5.5 Scheduling of communication primitives..................................... 203

5.5.1 Scheduling of data channels ... 203

5.5.2 Scheduling of call channels... 205

5.5.3 Scheduling of barriers.. 207

5.6 Alting with notion of priority ... 208

5.6.1 Resolute alting versus preference alting........................... 209

5.6.2 Preference alting implementation 213

5.7 Efficiency .. 215

5.7.1 Waiting queues... 215

5.7.2 Ready queues.. 216

5.7.3 Alting queues.. 216

5.8 Output guards ... 217

5.8.1 Alting disagreement .. 218

5.8.2 Alting agreement.. 221

5.8.3 Model checking and priorities ... 222

5.9 Conclusions.. 222

6 CSP concepts applied to control systems.. 225

6.1 Introduction ... 225

6.2 20-Controller.. 225

6.3 MIMO-OFDM test bed... 229

6.4 Laboratory PC and embedded PC ... 229

6.5 ARTY, an autonomous robot .. 230

6.5.1 Motor controller description .. 233

6.5.2 Process architecture ... 234

 Contents vi

6.5.3 Controller design.. 238

6.5.4 Implementation .. 239

6.5.5 Experiments .. 241

6.6 JIWY, a robotic servo system .. 242

6.6.1 Motion control description ... 244

6.6.2 Process architecture ... 245

6.6.3 Controller design.. 251

6.6.4 Implementation .. 253

6.6.5 Tests.. 254

6.7 Conclusions.. 255

7 Discussion ... 257

7.1 Conclusions.. 257

7.2 Suggestions for future research .. 261

A The CSP Language... 263

A.1 Introduction ... 263

A.2 Evolving Theory.. 263

A.3 The CSP Language.. 264

B Processor-specific methods .. 275

C The exception operator ... 279

C.1 Introduction ... 279

C.2 Proposed exception handling in CSP .. 279

C.3 Compositional semantics... 283

C.4 Livelock and deadlock ... 286

D Examples .. 287

D.1 Producer/Consumer example .. 287

Contents vii

D.2 Client/Server example... 289

D.3 Barrier Example... 296

D.4 Additional Guards.. 298

D.4.1 Skip guards.. 298

D.4.2 Timeout guards .. 299

D.5 State handling methods ... 300

D.6 ARTY Implementation ... 301

D.6.1 Top network builder.. 301

D.6.2 MotorControllerLeftProcess ... 303

D.6.3 MotorControllerLeft20Process ... 304

D.7 JIWY Implementation... 305

D.7.1 Top network builder.. 305

D.7.2 Motion controller process ... 309

D.7.3 Alignment controller process ... 310

D.7.4 Homing controller process ... 312

E Alting.. 315

E.1 Introduction ... 315

E.2 Fair alting ... 315

E.3 Any-to-any channel .. 316

E.4 Semantics of alting.. 321

E.5 Properties of alting ... 324

F Solving priority conflicts with buffered channels............................ 327

F.1 Introduction ... 327

F.2 Buffered data channels solve priority conflicts............................ 328

G Compositional analysis rule .. 331

 Contents viii

G.1 Introduction ... 331

G.2 Triangular cycles ... 331

G.3 Compositional Analysis Rule.. 333

H Pass-by-reference versus pass-by-value .. 335

H.1 Pass-by-reference .. 335

H.2 Pass-by-value... 336

H.3 Message passing for control software ... 337

Notation ... 339

Bibliography ... 343

Curriculum vitae .. 351

Voorwoord

In traditionele methoden, zoals ik die gedurende mijn opleidingen kreeg
voorgeschoteld, heb ik tekortkomingen en valkuilen ervaren bij het
ontwikkelen van software voor ingebedde systemen. Bepaalde
ontwikkelingen op het gebied van software ontwerpen en programmeren
maakten de dingen complexer in plaats van juist eenvoudiger. Door het
bestuderen van de programmeertaal occam en de achterliggende
theoretische concepten, heb ik ontdekt dat er wel een paradigma bestaat
dat software simpeler maakt in plaats van complexer. De clou zat hem in
een elegante benaderen van ‘concurrency’.

Ik had het geluk dat mijn ideeën, in het kader van mijn
afstudeeronderzoek, resulteerden in dit promotieonderzoek bij de
Leerstoel Regeltechniek van de Faculteit Elektrotechniek, Wiskunde en
Informatica (EWI) aan de Universiteit Twente. Door dit onderzoek heb ik
geleerd om software voor ingebedde systemen op een adequate en
systematische manier aan te pakken, d.w.z. dat concurrency de
complexiteit in de hand houdt. Door deelname aan conferenties en
reacties op eerdere publicaties heb ik kunnen vaststellen dat mijn
bevindingen ook ervaren en gedeeld worden door anderen.

Graag wil ik Job van Amerongen, Jan Broenink en André Bakkers
bedanken dat zij dit onderzoek mogelijk hebben gemaakt. Dusko
Jovanovic, Bojan Orlic en Peter Visser wil ik bedanken voor alle
suggesties en discussies die ik met hen gehad heb. Natuurlijk ben ik ook
mijn dank verschuldigd aan die talloze studenten die hun bijdrage
hebben geleverd aan dit onderzoek.

 Voorwoord x

Mijn stiefvader Jan Bilderbeek en mijn moeder wil ik van harte bedanken
voor hun steun en adviezen, en mijn moeder vooral voor haar creativiteit
gelegd in de omslag van mijn proefschrift. En dan nu wil ik mijn lieve
José bedanken voor haar geduld, toeverlaat en liefde gedurende dit
karwei. Dankjewel lieve mensen!

Gerald Hilderink

Enschede, 16 april 2005.

Summary

In this thesis, we are concerned with the development of concurrent
software for embedded systems. The emphasis is on the development of
control software.

Embedded systems are concurrent systems whereby hardware and
software communicate with the concurrent world. Concurrency is
essential, which cannot be ignored. It requires a proper handling to avoid
pathological problems (e.g. deadlock and livelock) and performance
penalties (e.g. starvation and priority conflicts). Multithreading, as such,
leads to sources of complexity in concurrent software. This complexity is
considered frightening, because it complicates the software designs and
the resulting code. Moreover, this paradigm complicates the
understanding of the behaviour of concurrent software.

A paradigm with a precise understanding of concurrency is essential. In
this thesis, a methodology is proposed that comprises a paradigm of
fundamental aspects of concurrency. These fundamental aspects are
derived from the Communicating Sequential Processes (CSP) theory. CSP is
a theory of programming that is developed by Hoare, Brookes, and
Roscoe. CSP comprises fundamental concepts useful for precisely
describing and studying concurrent systems. These concepts are based
on processes and events. Processes and events are abstract entities, more
abstract than objects. Processes and events are essential in describing and
reasoning about the real-time behaviour of process architectures. A
process architecture describes a (sub-) program as a composition of
communicating processes.

The proposed methodology brings a subset of CSP to practice in order to
specify, design, and implement process architectures. The CSP concepts
bring forth a glue-logic between these phases in the development
trajectory. Furthermore, these concepts offer technical solutions, which

 Summary xii

have been enhanced with notion of priorities, exception handling, and
timing. The precise semantics of the concepts and their restrictions
provide the guidelines to create reliable and robust concurrent software.
The abstraction and separation of well-defined concerns contribute to
managing complexity in concurrent software.

The proposed methodology defines the following ingredients:

1. A graphical modelling language defines graphical notations and
rules that are derived from CSP. The graphical modelling
language is used for specifying, designing, and graphically
programming process architectures. This results in CSP diagrams.

2. An object model implements the CSP concepts by means of object-
oriented techniques. This model can be implemented in object-
oriented programming languages. This results in the CSP libraries
for Java, C (in object-oriented style) and C++.

The graphical modelling language and the object model go together. CSP
diagrams are used to describe and to analyse process architectures. A
CSP library is used to implement process architectures in an object-
oriented programming language. This methodology uses process-
oriented and object-oriented techniques, and hides thread-oriented
techniques.

The proposed methodology is applied to control applications on
embedded computer systems.

Samenvatting

In dit proefschrift houden we ons bezig met de ontwikkeling van
concurrent software voor ingebedde systemen. De nadruk ligt op de
ontwikkeling van regelsoftware.

Ingebedde systemen zijn concurrent systemen, waarbij hardware en
software communiceren met de concurrent wereld. Concurrency is
wezenlijk en kan niet worden genegeerd. Het vereist een goede
behandeling die pathologische problemen (zoals deadlock en livelock) en
prestatieproblemen (zoals starvation en prioriteitconflicten) dienen te
voorkomen. Multihreading, als zodanig, leidt tot een bron van
complexiteit in concurrent software. Deze complexiteit wordt als
afschrikwekkend ervaren, want het bemoeilijkt de softwareontwerpen en
de resulterende code. Bovendien bemoeilijkt dit paradigma het begrijpen
van het gedrag van concurrent software.

Een paradigma met een precieze kennis van concurrency is essentieel. In
dit proefschrift wordt een methodologie voorgesteld dat een paradigma
van fundamentele concurrency aspecten behelst. Deze fundamentele
aspecten zijn ontleend aan de Communicating Sequential Processes (CSP)
theorie. CSP is een theorie over programmeren die is ontwikkeld door
Hoare, Brookes en Roscoe. CSP behelst fundamentele concepten die
geschikt zijn voor het nauwkeurig bestuderen van concurrent systemen.
Deze concepten zijn gebaseerd op processen en events. Processen en
events zijn abstracte entiteiten, abstracter dan objecten. Processen en
events zijn noodzakelijk voor het beschrijven van en het redeneren over
het real-time gedrag van procesarchitecturen. Een procesarchitectuur
beschrijft een (deel-) programma als een samenstelling van
communicerende processen.

De voorgestelde methodologie brengt een deelverzameling van de CSP
theorie naar de praktijk voor het specificeren, ontwerpen en

 Samenvatting xiv

implementeren van proces architecturen. Deze CSP concepten leiden tot
een perfecte passing van deze fasen in het ontwikkeltraject. Bovendien
bieden deze concepten technische oplossingen, welke zijn aangevuld met
prioriteiten, foutenafhandeling en notie van tijd. De precieze
betekenissen van de concepten en hun beperkingen zorgen voor
richtlijnen om betrouwbare en robuuste ingebedde regelsoftware te
ontwikkelen. De abstractie en de scheiding van goed gedefinieerde
belangen dragen bij tot het beheersen van complexiteit in concurrent
software.

De voorgestelde methodologie definieert de volgende ingrediënten:

1. Een grafische modelleringstaal definieert grafische notaties en regels
die afgeleid zijn van CSP. De grafische modelleringstaal wordt
gebruikt voor het specificeren, ontwerpen en grafisch
programmeren van procesarchitecturen. Dit resulteert in
zogenaamde CSP diagrammen.

2. Een object model implementeert de CSP concepten door middel
van object-georiënteerde technieken. Dit model kan vervolgens
worden geïmplementeerd in object-georiënteerde
programmeertalen. Dit resulteert in CSP bibliotheken voor Java, C
(in object-georiënteerde stijl) en C++.

De grafische modelleringstaal en het object model sluiten op elkaar aan.
CSP diagrammen worden gebruikt om procesarchitecturen te beschrijven
en te analyseren. Een CSP bibliotheek wordt gebruikt om
procesarchitecturen te implementeren in een object-georiënteerde
programmeertaal. Deze methodologie maakt gebruik van proces-
georiënteerde en object-georiënteerde technieken en verbergt thread-
georiënteerde technieken.

De voorgestelde methodologie is toegepast op regelapplicaties voor
ingebedde computer systemen.

C H A P T E R 1

Introduction
1 Introduction

1.1 Concurrency and complexities in
embedded control software

In this thesis, we are concerned with the development of embedded
control software for mechatronic systems. Mechatronics deals with
controlled mechanical systems that are designed as a whole. Mechatronic
design is the integrated design of a mechanical system and its embedded
control system. A mechatronic design approach leads to more flexible
and cost effective machines with better performance (van Amerongen,
2003). Examples of mechatronic systems are robots, production
machines, modern cars, airplanes, CD- and DVD-players, etc. The
controller part of a mechatronic system is mostly realized in software as
an embedded control system. Embedded control systems require safety,
reliability, robustness, and the guarantee that their processes meet their
deadlines for a safe and reliable operation of the entire system. Those
systems are hard real-time and inherently concurrent since they interact
and respond in time to a concurrent world.

The total behaviour of a mechatronic system is described by its physical-
system dynamics, control laws, and the characteristics of the software
and hardware. These artefacts are inherently concurrent in which all
components participate and aggregate. Concurrency naturally fulfils a
glue-logic between the different artefacts and components in software

 1. Introduction 2

and hardware. It offers the means to integrate components and take
away discontinuities between them. In fact, concurrency offers the tools
to manage complexities.

Embedded control software is considered both sophisticated and
complex. It has to deal with several sources of complexities in software
engineering, such as:

• multithreading,

• interrupt handling,

• exception handling,

• inter-processor communication,

• priority scheduling and preemption,

• precise timing and sampling,

• reactivity and responsiveness,

• safe-guarding and fault-tolerance.

These sources of complexities concern concurrency in both software and
hardware. Software design and programming tools, languages, and
methods have to deal with these sources of complexities. Commonly, ad-
hoc solutions are offered that deal with these issues. Ad-hoc solutions are
individual solutions meant for one thing only. It is up to the user to
integrate these ad-hoc solutions into a concurrent framework. This
process is being complicated when a paradigm of loosely coupled
concepts are used. These ad-hoc solutions require a common level of
abstraction in order to understand the separate concerns as a whole and
in a systematic way.

Software design and programming tools, languages, and methods must
capture a good understanding of concurrency. Concurrency should be
driven by coherent and formal concepts and not by ad-hoc solutions.
Therefore, the foundation that underlies these tools, languages, and
methods must contain coherent concepts that integrate the previously
mentioned sources of complexities and abstract away from ad-hoc
solutions.

1.2 Scope of subject 3

The semantics of these concepts must be preserved during the
development of embedded systems. In this thesis, a methodology is
proposed that captures a good understanding of concurrency as a whole,
in a natural and systematic way. A keystone of this methodology is
Communicating Sequential Processes (CSP) (Hoare, 1985; Roscoe, 1998). CSP
is a theory embracing fundamental concepts describing and
understanding concurrency in a formal and systematic way. The
foundation that underlies the proposed methodology is suitable for
developing embedded software, in particular, embedded control
software.

1.2 Scope of subject

1.2.1 Embedded control

The following definitions are frequently used in this thesis, which are
derived from common definitions found in literature and on the internet.

An embedded system is a combination of computer hardware and software
that is embedded in a larger system, hidden from the end-user. A
common characteristic of an embedded system is that it is programmed
to perform a set of functions that minimizes end-user or operator
intervention; thus an embedded system automates a product.

A real-time system is one in which the correctness of the system depends
not only on the logical results, but also on the time at which the results
are produced.

An embedded control system is an embedded real-time system with the task
of controlling a physical process. An embedded control system consists
of one ore more control loops (i.e. controller processes) interacting with a
physical process through sensors, actuators and its input/output
interface. A blueprint of an embedded control system, as part of a
mechatronic system, is depicted in Figure 1-1.

 1. Introduction 4

Figure 1-1 Blueprint of a mechatronic system.

A sensor is a device that responds to a physical stimulus (heat, light,
pressure, motion, flow, and so on), and produces a measurable
corresponding electrical signal. This electrical signal is translated by the
computer hardware into a digital value that is consumed by the control
software.

An actuator is a device which performs a physical action to an electrical
stimulus generated by the computer hardware.

The electrical circuits that perform signal conversion between the
computer, sensors, and actuators are called the input/output interface (I/O
interface) of the embedded computer system. The arrows between the
embedded control system and the plant are usually electrical signals. The
arrows between the embedded control system and its I/O interface are
digital signals and the arrows between the plant and the sensors or
actuators are physical stimuli.

The controller process interacts with one or more physical processes. The
behaviour of this control process is composed by at least two parallel
processes that engage in communication at discrete moments in time.
Conceptually, a controller process is event-driven, which may engage in
respectively periodical communication events, sporadic communication
events, or perhaps a mix of both. The communication events represent

Embedded Control System

Plant

Embedded
Controller

Process

Physical
Process

sensors

I/O interface

actuators

1.2 Scope of subject 5

the completion of signal conversion (e.g. sampling and actuation), based
on fixed or variable time intervals. In this thesis, hard real-time control
systems are considered for which every missed deadline is an error.
Therefore, the communication events must happen within a deadline or
at precise moments in time. The real-time behaviour of an embedded
control system is observable by tracing the events. These traces are
suitable to guarantee the proper functioning of the system.

Embedded control systems are often part of larger heterogeneous
systems connected by their I/O interfaces. These systems vary from
single central processor unit (CPU) systems that are compact and
constrained by a limited amount of resources (e.g. memory and CPU
speed), to single CPU systems with ample system resources, or to
multiple CPU systems distributed over a plant. Considering the variety
of concerns in hardware and software and the variety of ad-hoc solutions
to these concerns, it is not surprising that embedded software
engineering is often considered complex and specialized, even without
considering the difficulties of control law design. A programming model
is required which deals with this complexity in an elegant way. Such a
programming model is usually based on a real-time kernel (RTK)
technology that provides an abstract layer of services, which controls the
hardware and schedules multiple threads of control. This layer
comprehends an application programming interface (API) with desirably
low overheads. A RTK can exist as a microkernel real-time operating
system (RTOS) (e.g. QNX (1998), CMX-RTX (1998) or μC/OS (1998)) or as
part of a larger real-time operating system (e.g. Real-Time Linux
(FSMLabs, 2002; RTAI, 2002), VxWorks (WindRiver, 2002), and OS9
(RadiSys, 2002)). These RTKs provide loosely coupled imperative
primitives (e.g. thread control and synchronization, signal handling, and
timed interrupt handling) which widen the number of features but
complicate writing reliable concurrent software at the same time. No
RTK is the same and their semantics and behaviour are not uniform for
real-time systems. One may realize that this programming paradigm is
meant to instruct the processor, but this paradigm is too low level and
too detailed for the human understanding of the structure and behaviour
of control software. Furthermore, the API incorporates ad-hoc solutions
to pathological problems, such as deadlock and livelock, and priority

 1. Introduction 6

inversion. This is done by using respectively asynchronous
communication and priority inheritance techniques to cure illnesses in
the implementation rather than providing guidelines or rules to prevent
them in the first place.

1.2.2 Computer-aided design tools

Computer-aided design (CAD) tools for developing control software,
such as the Real Time Interface (RTI) from dSPACE (2002) and the Real
Time Labview Module (RTLM) from National Instruments (2004), are
world-widely known and used for creating control software. These tools
deliver a powerful graphical development environment for signal
acquisition, measurement analysis, data presentation, and model-based
control system design. Essentially, they give the flexibility of a
programming language without the complexity of traditional
development tools and give all-in-one solutions for dedicated hardware.
Their success is due to the automation of code generation and system
monitoring, which negates the need for the control engineer to code. The
tools are guided with documentation and are easy of use.

Under the hood of RTI and RTLM, these tools hide a rigid software
framework that is performed by the embedded computer system. The
core of the generated code is basically a simulator that comprises a
sequential state machine, which is timed on constant timing intervals.
This sequencing makes model checking for tracing pathological problems
unnecessary, but the sequential framework becomes complicated when
concurrency is unavoidable. Concurrency involves performing
distributed tasks in parallel, triggering tasks at a specified time interval,
and assigning equal or different priorities to each parallel task. This is
specified in a process diagram, apart from block diagrams that describe
the functionality of the controller. A process diagram specifies the tasks
(specified by block diagrams) to be performed in parallel or on (timed)
interrupts. Once the block diagrams and process diagram have been
completed, the controller is up and running on the processor board by a
few user actions.

1.2 Scope of subject 7

Despite the flexibility and user-friendliness of these CAD tools, the
concurrency paradigm that is used in the translation from a process
diagram to its implementation is based on RTOS or RTK primitives. The
semantics of these primitives may not be uniform and these primitives
complicate the code. The automation from design to code, results in a
one-way transformation disallowing round-trip engineering.
Consequently, customizing the framework for an initially unsupported
computer target is a costly task that is dedicated for specialists.

A concurrency paradigm should have been used that scales well with
complexity, is highly portable, and that is uniform. CSP offers a
concurrency paradigm that fulfils these requirements. CSP provides a
good foundation for CAD tools to develop control software. Examples of
which can be found in THESIS (1993) and Ptolemy II (2003). These
methods describe two different control software design strategies. These
strategies benefit from using CSP for building concurrent control
software in an elegant way. THESIS and Ptolemy use simplified CSP
constructs, which are restricted for a broader use.

1.2.3 Multithreading

Concurrent software involves multithreading. Multithreading is the
ability to have more than one task occurring in a program (Lewis and
Berg, 1996; Silberschatz and Galvin, 1994). A thread is a set of statements
or coherent functions that execute sequentially at the same priority.
Multithreading improves the utilization of a single or multiple CPUs,
whereby the program can continue performing those tasks that are not
waiting for an event to happen. This improves the throughput and
responsiveness of the program.

A scheduler slices the main thread for each available CPU into multiple
sub-threads (semi parallel). A thread is scheduled on a CPU and
comprises a program context; i.e. the program counter, general registers,
stack pointer, and the stack. At any one time only a single thread can be
executed on a CPU. A multiprocessor system with n CPUs can therefore

 1. Introduction 8

execute n threads simultaneously (truly parallel). The entirety of a (sub-)
thread is also known as a task.

Synchronization is required between multiple threads upon a shared
resource. Two important synchronization primitives are semaphores
(Dijkstra, 1968a) and monitors (Brinch-Hansen, 1973; Hoare, 1974). Both
synchronization primitives offer various kinds of mutual exclusion
constructs (or critical regions), where each thread may enter the construct
(or region) one at the time. Hoare (1974) described a fair monitor as a
concept for operating systems based on Dijkstra’s semaphores. Derived
monitor implementations are found in modern operating systems and in
programming languages like Java (Arnold et al., 2000) and C# (Microsoft,
2003).

These synchronization constructs may depend on global conditions
among different synchronization constructs. However, these
synchronization constructs cause a few problems:

• The synchronization primitives intertwine with objects, which
complicate the implementation of the objects. While the
software grows, its complexity may not linearly scale with the
growth. Consequently, the understanding and the verification of
its correctness will become error-prone and hard to grasp.

• In case the synchronized resource is an object that mostly is
accessed by a single thread, the synchronization construct
decreases the overall performance.

Operating systems offer higher-level constructs that encapsulate
semaphore and monitor constructs. Examples of such higher-level
constructs are signal-handling, mailboxes, input/output-streams, and
barriers (joins). The higher-level constructs make concurrent software
less error-prone and they are applied when multiple threads are certainly
involved. We observe these higher-level constructs as ad-hoc solutions to
individual problems without collaborating to coherent concepts and
without a formal mathematical foundation.

Hoare advocates reasoning about concurrency with processes and
events, rather than with threads and monitors (Hoare, 1985). Monitors

1.2 Scope of subject 9

are too complicated to understand the behaviour of a complex
concurrent program. Instead, Hoare developed CSP as a formal
foundation for describing concurrent systems. CSP is also multithreaded
but it surpasses threads, semaphores, and monitors by defining channels
and other related fundamental primitives. CSP provides all the syntactic
and semantic information for describing and understanding concurrency
based on fundamental and compositional semantics. CSP is further
discussed in Section 1.4.3.

1.2.4 Occam and Transputer

The transputer and occam technology provided a simple and elegant
platform for building sophisticated, reliable and robust control systems.
The parallel programming language occam (Inmos, 1988) is an
implementation of a subset contained in CSP. Furthermore, occam is a
highly secure programming language, which detects hazardous or
errors-prone concurrency constructs at compile-time. Transputers are
microprocessors that are designed to execute occam programs most
efficiently. Transputers are equipped with four links. Transputers are
building-blocks in homogeneous multiprocessor systems based on
distributed memory. A link is a peer-to-peer connection between
transputers that provides external channel communication between
processes distributed on a network of transputers.

The manufacturing of transputers ceased around 1996. Ivimey-Cook
(1999) notes that the Inmos transputer was more than a family of
processor chips, it was a concept, a new way of looking at system design
problems. In many ways, that concept lives on in the hardware design
houses of today, using macro cells and programmable logic.
STMicroelectronics continues with the transputers core of the T414, in a
low-cost chip called the ST-20, which is no longer referred to as a
transputer. The ST-20 is nowadays sold as the STi5518 CPU which can be
found in many TV set-top boxes and satellite receivers. Transputer links
are found in other products. DEC’s Alpha processor 21364 uses
transputer-class links for building multiprocessor configurations (DEC,

 1. Introduction 10

2003). Transputer-class links are used for SpaceWire networks for the
space industry (4Links, 2003; SpaceWire, 2003).

Since transputers, as such, have become obsolete, the programming
language occam evolves slowly and is still supported by a small
community in the world. Translators exist for porting programs that are
written in occam to processors other than transputers. Two translators
are available: Kent Retargetable Occam Compiler KROC (KROC, 1999)
and the Southampton Portable occam Compiler SPoC (SPoC, 1998).
KROC translates transputer code that is produced by the occam compiler
to native code for a target processor and SPoC translates transputer code
to portable C code. Recently, the occam compiler source code has been
released. An updated occam compiler supporting an updated occam
programming language may be expected in the future. Despite these
efforts, the future of occam is very uncertain. Occam suffers from not
being a popular programming language due to the fact that the concepts
behind occam are not well known by most software developers and
perhaps the syntax is not favoured among programmers. The
programming languages Ada (Barnes, 1988), Limbo (Stanley-Marbell,
2003), and Handel-C (Page, 2001) have similar roots. Similar to the afore-
mentioned reasons, Ada and Limbo also suffer from lack of worldwide
acceptance. However, Handel-C is C-alike and grows in popularity for
programming field programmable gate arrays (FPGA). On the other
hand, the look-a-like syntaxes of C (Kernigham and Ritchie, 1988), C++
(Stroustrup, 2000) and Java are preferred and widely accepted. One can
imagine that the C, C++ and Java community could benefit from CSP by
providing a CSP library for these programming languages. Furthermore,
such a CSP library should be suitable for heterogenous multiprocessor
systems based on shared or distributed memory

1.2.5 THESIS

A sound and intuitive foundation for the realization of control software
and hardware was described by Wijbrans (1993). This resulted in the
Twente Hierarchical Embedded Systems Implementation by Simulation
(THESIS) method, which investigated the use of parallel processing and

1.2 Scope of subject 11

structured design methods for embedded control system realization. This
method was aimed at filling the gap between the derivation of the
control algorithms and the controller realization by recommending a
strategy that guides the engineer during the design process, provides a
formalism for the description of the controller, and suggests support
tools that aids the engineer during the design process.

A control application is inherently data-flow oriented. Therefore, THESIS
was naturally based on a channel-based methodology in order to
guarantee consistencies and filling the gap between the different stages
in the controller design and the final code. Wijbrans chose a software
design tool based on the structured analysis and structured design
(SA/SD) method of Hatley and Pirbhai (1987). The implementation and
realization of the design is based on the parallel programming language
occam and transputer hardware. Due to the CSP concepts that come with
occam and transputers, this method resulted in reliable, robust, and well-
structured real-time control software for various mechatronic systems at
the laboratory of Control Engineering. THESIS was applied to several
industrial applications (Wijbrans, 1993). The technical abstraction that
comes with occam and transputers reduced complexities in
implementing controller software. This increased the development speed
compared to imperative programming, which uses sequential
programming languages, like C or C++, with multithreading primitives.
This is an important lesson we learn from occam and transputers.

The Hatley and Pirbhai method, occam, and transputers are considered
outdated, taking into account the present trends in technology. These
should be replaced by technology that keeps THESIS up-to-date.

 1. Introduction 12

1.3 Aim of research
Considering the scope of subject, the aim of this research is formulated as
follows:

The aim of this research is developing a CSP-based methodology for
building embedded real-time software for heterogeneous embedded control
systems.

This aim is multilateral because concurrency concerns all phases of
software engineering. For each phase a sub-aim can be formulated:

• In the specification phase this research aims at identifying and
specifying concurrency as part of the requirements.

• In the design phase this research aims at designing solutions to
the problems, while maintaining concurrency and dealing with
complexity reduction and absorption.

• In the implementation phase this research aims at the development
of an object-oriented concurrent framework that protects the
engineer from needing exclusive skills on programming threads.

• In the realization phase this research aims at porting the
implementation to hardware so that the hardware is efficiently
used and satisfies the required performance.

• The concurrent software should be systematically tested to
determine whether or not the software satisfies the required
specification.

The methodology should deal with common sources of complexities in
programming concurrent software, such as multithreading, interrupt
handling, exception handling, inter-processor communication, priority
scheduling, reactivity, responsiveness, etc. These technical issues should
be elevated to a high level of abstraction in order to simplify the design
of the application and to simplify the required mindset of the engineer.
The resulting concurrent software should be similar to that obtained by
an experienced software engineer. A structured approach using sound

1.3 Aim of research 13

and proven concepts is required, which deals with these technical issues
without introducing surprises, discontinuities, or non-scalable
complexities. Such a structured approach should stretch over all phases
of software engineering. The approach should provide an architectural
view that binds all phases in the development process and can be
implemented when completeness is achieved. The continuity and
consistency between the different phases of software engineering should
be guaranteed, which allows for rapid prototyping and round-trip
engineering. The proposed methodology should provide the technical
“how to’s” for building concurrent software.

The proposed methodology is guided by the following goals:

• to make things reasonably safe but not too restrictive,

• to make compromises so as not to introduce unreasonable
inefficiencies,

• applicable for real-time and embedded applications, in
particular for control applications,

• and portable among different platforms.

It is expected, due to experiences with occam, that the CSP concepts will
result in tools that obtain control software at a fast pace in development
and at a moderate cost. The programming languages C, C++, and Java
are of interest for coding control software since these programming
languages are used and supported by the vast majority of embedded
software engineering companies. The proposed methodology will be
applied to several embedded control systems. During this research 20-
sim (2003) is used for controller design and automatic code generation of
the control laws.

 1. Introduction 14

1.4 Research approach

1.4.1 Complexity

The growth of software, in terms of size and the number of features it
should perform, increases the complexity of software. The software
engineer must deal with this complexity. Software design tools,
modelling and programming languages, and software design methods
are slowly evolving in order to simplify this task. However, the lack of
common concepts that stretches over these tools, languages, and
methods cause discontinuities between them. These discontinuities are
hurdles in the software design trajectory. The solution to this problem is
to eliminate discontinuities between the different models and phases in
the software design trajectory. In order to understand what is required,
we elaborate on complexity in this section.

Complexity is a conception that is related to the human intuition. One
person may find something complex to understand whereas someone
else may find it simple to understand. In order to understand this
phenomenon of complexity, complexity is defined as follows:

Definition (complexity): Complexity is the amount of thought it takes a
person to grasp a problem and/or to develop a solution to that problem.

The amount of thought depends on many factors which are human
related, i.e. previous knowledge and the ability of complexity reduction
(simplification through abstraction, generalization, or mental images)
and complexity absorption (speed and capacity of remembering,
followed by reconstruction). Complexity is something that is cognitive or
subjective and can be different for each individual person or common to
a group of persons who share similar skills. Complexity can be measured
by comparison between two or more alternatives. Quantities have been
proposed to measure complexity and capture all our intuitive ideas about
what is meant by complexity and by its opposite, simplicity. Complexity
is often measured by time measures or information measures (Gell-
Mann, 1995). Time measures express how much time or steps it takes to

1.4 Research approach 15

grasp the problem or to finish a computation. Information measures
express the length of the shortest message conveying certain information.
Complexity measures are context-dependent.

In order to manage complexity, a common context-related language is
required, which the human mind can easily grasp with assumed
previous knowledge and understanding. The language should advocate
complexity reduction and complexity absorption, which eventually
results in reasonably low complexity measures. Time measures and
information measures are reduced by concurrency. In other words,
concurrency manages complexity! Therefore, the language should
incorporate concurrency. Most tools, languages, and methods lack a
good understanding of concurrency and not surprisingly they fail to
describe a concurrent system with low complexity measures. The UML is
a good example of a common language that suffers from discontinuities
between different diagrams (or views), due to a poor concurrency model.
Its concurrency concepts do not stretch over the multiple views and this
makes concurrent software complex and error-prone rather than simpler
and safe. Apparently, a wrong concurrency paradigm has been used in
the UML.

A mathematical foundation may contribute to a quality of understanding
and reasoning about the behaviour of concurrent software. Often the
results of mathematics can be summarized to formal and abstract
concepts, implemented as practical constructs, guidelines, and rules. This
is similar for CSP and its underlying theory. CSP comprehends a
mathematical foundation, whereby simplification is achieved due to
abstraction and a separation of well-defined concerns.

1.4.2 Concurrency

We live in a concurrent world where multiple tasks exist at the same
time. These tasks are carried out in parallel, in sequence, or by some
choice, and possibly communicate with each other. As in real life, clarity
is obtained through concurrency. If one had to describe the behaviour of
our environment as a strictly sequential model (or as one task) then this

 1. Introduction 16

would be too complex. Concurrent tasks exist at the same time, and they
can be observed individually or in composition of other tasks. The
existence of multiple tasks at the same time does not imply that these
tasks are in parallel. Some tasks may be in parallel, some are waiting for
another task to complete, or tasks are alternatively performed due to
certain conditions. Parallelism implies that when a task has to wait for an
event to happen, another task can continue. This most likely increases the
overall throughput and responsiveness of an application.

Although the high performance and the simplicity of a computer is
attributed to concurrent hardware, concurrency in software is often
thought to be an advanced topic that is much harder than serial
computing.

The term concurrent is often used as a synonym for parallel. These terms
have something in common but their nature has different semantics.
Essentially, concurrency comprehends more than just parallelism. For
example, consider a simple system of two communicating computers in
parallel. The parallelism is simply and solely not sufficient for
understanding the behaviour of the system. More interesting still, is the
understanding of the total behaviour of the system as an aggregation of
sequential parts on each of the two computers, which are executed in
parallel and that synchronize on communication. The elements
sequential, parallel, synchronization, and communication are subject to
concurrency in the system. Such a system is known as a concurrent system,
where there is more than one process existing at a time, whose
component processes interact with each other by communication.
Concurrency accommodates common goals, whereas parallelism
accommodates two or more independent goals with respect to
performance requirements. The distinction between concurrency and
parallelism helps a great deal in separating concerns in embedded
system engineering. In this thesis, the term concurrent system is used
when the parallel system is viewed as a whole and the term parallel
system is used when the distribution of individual computers in the
system is considered.

1.4 Research approach 17

Concurrency is defined as follows:

Definition (concurrency): Concurrency is an abstraction of behaviour,
where the system is viewed as a set of parallel, sequential, and
alternative processes that interact with each other by communication.

In sequential programs, parallelism is replaced by sequential patterns of
code which sequence is valid in parallel form. In a sequential language,
communication is a combination of actions on shared variables or shared
objects, whose actions are streamlined by a single sequential flow of
control. In this sense, concurrency in sequential programs is done
implicitly. Roscoe (1998) points out that this happens too implicitly in
sequential programming languages. This becomes a major disadvantage
when using a sequential programming language for creating concurrent
(multithreaded) programs. Roscoe brings to mind that “this effect also
shows up when it comes to mathematical reasoning about system behaviour:
when it is not made explicit in a program’s semantics when it receives
communications, one has to allow for the effects of any communication at any
time.”. A paradigm that comes from true parallel systems (e.g. computer
hardware, electronic components, etc.) benefits from concurrency and
makes systems simpler. This illustrates that concurrency is too powerful
and, indeed, too simple an idea to be set aside. With a better handle, it
can simplify both the design and the implementation of most complex
systems, as well as boost performance.

Concurrency should provide:

• a powerful tool for simplifying the description of systems;

• natural separation of concerns at the highest level of abstraction
in terms of processes and their interrelationships;

• performance that spins out from the above, but is not the
primary focus;

• a model that is mathematically, clean springs no engineering
surprises, and scales well with system complexity.

The observable and fundamental entities of concurrent systems are
events. An event is an occurrence in time and space, which involves two

 1. Introduction 18

or more processes that engage in the event. One process cannot engage in
an event on its own. During the event, particular indivisible actions are
performed. These actions are strictly concurrency related, such as, data
transfer, synchronization, and thread scheduling. An event represents
the completion or successful termination of its actions, which only occurs
when all associated processes rendezvous with each other. An event is
not an object, it is not simply a method call on an object, and it is not an
expression that becomes true. An event can only occur on rendezvous
between two or more processes. The term process will be explained in
Section 2.3.1.

In this thesis, we distinguish between communication events,
termination events, timeout events, and exception events. A
communication event is the occurrence of two processes engaged in
communication over a channel or barrier. A termination event is the
transition from one process to a subsequent process. A timeout event is a
rejection of communication when it is not ready before a specified time.
An exception event is an internal event of a process that stops the process
from making progress. Communication events and termination events
are the primary events from which timeout events and exception events
are derived.

1.4.3 Communicating Sequential Processes

CSP is a theory of programming and a notation for describing concurrent
systems whose component processes interact with each other by
communication (Hoare, 1985; Roscoe, 1998). Its concepts are based on
mathematics and compositional semantics. In CSP, one can specify
requirements precisely and prove that they are satisfied by our
implementations. CSP is about 10 years newer than object-orientation
and 5 years newer than monitors. The theory has evolved over time and
its concepts are timeless (Hoare, 1978; Hoare, 1985; Roscoe, 1998;
Schneider, 2000).

CSP deals with processes, networks of processes and various forms of
synchronization and communication between them. A network of

1.4 Research approach 19

processes is also a process and so CSP naturally accommodates layered
(or nested) structures, i.e. networks of networks. A CSP process isolates
data and operations from other processes. Its behaviour is completely
described by the way it communicates with its external environment via
channels. A channel performs a barrier synchronization between two
processes. A barrier is a rendezvous point on which two or more
associated processes are blocked until all processes reach the rendezvous
point. A barrier can be represented by a single channel between two
processes, by a bundle of channels between two or more processes, or by
a parallel construct that terminates when all participating processes have
terminated. Channel and barrier communication are observable as
communication events.

Processes are components that are complete and have no complex
dependencies on other components. The definition of a process
comprises syntactic and semantic information on how the process
interacts with its environment. This information is entirely specified
through a defined interface—its abstraction—consisting of various
synchronization primitives as defined in CSP. The synchronization
primitives encapsulate the principles of multithreading and brings about
channels, barriers, and binary operators. These binary operators are
represented as compositional constructs.

CSP is founded on what is called compositional semantics. CSP offers three
distinct ways of describing the meaning of a program, namely
operational, denotational, and algebraic semantics. The operational
semantics interprets programs as state diagrams. The denotational
semantics maps a language into an abstract model in such a way that the
value (in the model) of any component is determinable directly from the
values of its immediate sub-components. These values are based on
traces, failures, and divergences (Roscoe, 1998). Algebraic semantics are
defined by a set of algebraic laws. Each semantic complements each
other. The mathematics are left to the CSP books (Roscoe, 1998;
Schneider, 2000) and model checking tools (FDR, 2004; ProBE, 2003), but
its assets should be brought to practical use for the user to describe the
compositional semantics of the software suitable for formal analysis.

 1. Introduction 20

1.4.4 Strategy

A concept is an abstract principle with a well-defined semantics. A
concept is less sensitive to changes than its implementation. After all,
good concepts live longer than their implementations. Concepts are the
building-blocks of a methodology. Therefore, the quest of this research is
to develop an implementation using modern technology that replaces
occam and transputers while maintaining the invaluable CSP concepts.
The implementation of the CSP concepts is the foundation for the
proposed methodology.

The aim of this thesis is accomplished by realizing the following goals:

1. A CSP-based graphical modelling language should be defined for
specifying and designing control architectures using graphical
notations.

2. A object model should be developed that implements the CSP
concepts using object-oriented techniques. The object model
should be abstract, but eventually the model must be
implemented in the programming languages C, C++, and Java.
This should result in three CSP libraries for C, C++ and Java.
Currently, the Java run-time environment takes significant run-
time overhead, making it unsuitable for embedded real-time
systems. Therefore, the CSP libraries for C and C++ are meant to
boost performance on embedded systems.

3. Demonstrate the proposed methodology on several control
systems at the laboratory of Control Engineering.

The object model is prototyped in Java and partly documented using
UML diagrams. Java was used for the following reasons:

• Java is popular and world-widely supported,

• Java is better than C++ (i.e. simpler, safer, C look-a-like),

• Java was meant for embedded systems,

• Java is object-oriented and multithreading is supported within
the language and the Java run-time system.

1.5 Overview of thesis 21

The prototype in Java was meant for educational purposes and from
which C and C++ versions should be derived. A version in C and C++ is
required in order to boost performance. UML diagrams are used to
document the object model.

Valuable aspects of component-, process-, and object-oriented
technologies should be incorporated in the object model. A relationship
with other methodologies, being suitable for creating control software,
should be maintained. Methodologies of interest are UML (1998), ROOM
(aka RT-UML) (Selic et al., 1994), Octopus (UML version) (Awad et al.,
2002), Ptolemy II (Ptolemy, 2003), and structured methods (Hatley and
Pribhai, 1987; Yourdon, 1989), and THESIS (Wijbrans, 1993).

1.5 Overview of thesis
The realization of the postulated aims is described in the following
chapters:

Chapter 2

A structured approach to embedded control systems implementation is
discussed. This chapter emphasizes the importance of processes and
events during the development of control models and control software.

Chapter 3

A graphical modelling language for specifying and designing process
architectures is described. The graphical notations are derived from CSP
which allow the user to convert data-flow oriented control models into
executable models, called CSP diagrams.

 1. Introduction 22

Chapter 4

A CSP library for Java is described. This library renders the application
programming interface (API) of the object model in Java. Also, the library
stands model for implementations in other object-oriented programming
languages. CSP diagrams can be straightforwardly implemented with
this CSP library to Java. The implementation of the API is not described
in this chapter.

Chapter 5

Real-time behaviour is important and usually priorities are the solution
to allow real-time processes to meet their deadlines. A notion of priorities
for CSP-based software is described. Priorities are supported by CSP
diagrams (discussed in Chapter 3) and are implemented in the CSP
libraries for Java and C++ (discussed in Chapter 4 and 6).

Chapter 6

The CSP diagrams and the CSP library for C++ have been applied to
several embedded control systems. Several applications illustrate how
CSP diagrams and the CSP library for C++ contribute to the development
of reliable and robust control software.

Chapter 7

The results of this research are reviewed. Conclusions and
recommendations are subject of this chapter.

C H A P T E R 2

A Structured Approach to Embedded
Control Systems Implementation

2 A Structured Approach to Embedded Control Systems Implementation

2.1 Introduction
Control systems are concurrent systems, which involve processes
deployed in hardware and in software. These processes perform tasks at
periodic intervals (e.g. sampling, actuation, and data processing) or at
sporadic stimuli from the environment (e.g. mode-switching, safe-
guarding). These processes must guarantee real-time constraints; e.g.
reactivity, responsiveness, and deadlines. The control software integrates
concurrency related concerns, such as multithreading, interrupt
handling, exception handling, timing, and scheduling. These concerns
propagate through the design and implementation of control
applications for which an appropriate understanding of concurrency is
crucial to their development.

The above mentioned concurrency related concerns can complicate the
implementation of the execution framework when these concerns are
treated as ad-hoc solutions. The transformation of the controller design to
its implementation is usually automated, which hides the complicated
code framework from the user. Consequently, the user has control over
the objects in the design, but the user has restricted control over the
execution framework and its performance. This automation is not a
problem unless its restrictions become a burden. This can cause a serious

 2. A Structured Approach to Embedded Control Systems Implementation

24

gap between a controller design and its implementation on dedicated
target platforms. A structures approach is required that is based on
sound and formal concepts that enable the integration of concurrency
related concerns without surprises.

The user is primarily focussed on processes during the design of a
control system, and secondarily on objects. A control system is a process
of one or more control loops. Each control loop is a process that is
performed partly in software and partly in hardware. The control
engineer is concerned with a hierarchy of processes during specification,
design, implementation, and verification by simulation of control system.
It are those processes that describe the behaviour of the system. Processes
and objects go hand in hand, whereby objects implement processes.
Therefore, a control system is not solely described in terms of objects, as
some object-oriented engineering approaches do suggest. The THESIS
method (Wijbrans, 1993) showed that process-orientation offers a
structured approach to control system design and implementation.
Although THESIS is more than 10 years old, most of its propositions are
still applicable to the methodology presented here.

This chapter emphasizes the importance of process identification, process
architecture design, and process analysis for the development of control
systems. This process-orientation constitutes to a structured approach,
which involves the different disciplines in control system development.
The process architecture design elevates the previously mentioned
concurrency related concerns to a higher-level of abstraction that is in
control of the user. The structured approach, presented here, follows the
chain of thoughts behind the THESIS method.

The conceptual design of control software for mechatronic systems is
discussed in Section 2.2. Several disciplines in the control system design
trajectory are distinguished. The emphasis is on identifying processes
that are subject to refinement. In Section 2.3, the importance of processes
and process architectures in the development of control software are
discussed. The THESIS method is briefly described in Section 2.4.
Conclusions to this chapter are described in Section 2.5.

2.2 Conceptual design for controller software of mechatronic systems

25

2.2 Conceptual design for controller
software of mechatronic systems

2.2.1 Multidisciplinary design approach

In a mechatronic systems’ approach, the dynamic properties of the total
system play a central role. The controller being designed is in general a
dynamic process, which is connected to dynamic processes that model
the physical system to be controlled. These processes are the building-
blocks that manifest a process architecture that describes the entire
behaviour of the system. Therefore, a process architecture encompasses a
multidisciplinary design approach and may involve a team of people.
Specific design methods and design tools are required for processes in
specific domains, which are tailored to the type of system for which they
are intended.

A typical process architecture of a control application starts with three
kinds of processes; controller processes, physical processes, and
supplemental processes. Figure 2-1 illustrates a process architecture of
processes (rectangles) and their communicational relationships (arrows).

Figure 2-1 Context diagram (part 1 of 2) of a control system
showing communication relationships between the
controller, physical, and supplemental processes.

The controller processes are comprised of a variety of separate controllers.
The physical processes separate behaviours of a real plant to be controlled.
The supplemental processes are responsible for other things, such as,
maintenance, data analysis, diagnostics, repository, or user monitoring
and commands. Note that a control loop is described by a control process,
which involves a controller process and one or more physical processes.

Controller
Processes

Physical
Processes

Supplemental
Processes

 2. A Structured Approach to Embedded Control Systems Implementation

26

Figure 2-2 illustrates another view of the process architecture, with the
same processes, but with compositional relationships (connections). This
figure specifies that all three kinds of processes run in parallel and,
together with Figure 2-1, it specifies that these processes must
synchronize on communication.

Figure 2-2 Context diagram (part 2 of 2) of a control system
showing parallel relationships between the controller,
physical, and supplemental processes.

Both Figure 2-1 and Figure 2-2 show a top-level design, also called a
context diagram, representing the fundamental processes to be designed
within a particular context of the system. The graphical notation used,
along with their semantics, is explained in Chapter 3. This context
diagram portrays a CSP diagram, providing uniform connections between
the concurrent processes. Also, these connections depict the relationships
between the different disciplines. The context diagram is a joint point of
departure for the different design disciplines. It is possible that, for every
control loop, a separate context diagram can be designed and combined
together.

A process architecture acts as an intermediate in a multidisciplinary
design approach, which

• captures concurrency in the system,

• endures the stages in the design process,

• supports stepwise refinements.

Concurrency is an inherent part of control systems and establishes a clear
separation of concerns within the stages of control system design,
process architecture design, and the underlying stepwise refinement. The

Controller
Process

Physical
Process

Supplemental
Process

2.2 Conceptual design for controller software of mechatronic systems

27

stages of control system design are discussed in Section 2.2.2. Stepwise
refinement is addressed in Section 2.2.3.

2.2.2 Control system design trajectory

The control system design trajectory is partitioned in the following four
stages (Broenink and Hilderink, 2001):

• Physical-System Modelling—The dynamic behaviour of the
system is object–orientedly modelled, using a port-based
approach (e.g. bond graphs) as a main modelling paradigm.

• Control law Design—Using the model acquired in the previous
step or a simplified version of it, control laws are designed.

• Embedded Control System Implementation—Transforming the
control laws into efficient concurrent algorithms (i.e. computer
code) is guided via a stepwise refinement process.

• Realization—The realization of the control system is a sequence
of refinements that deals with the limitations, technical issues,
and the behaviour of an embedded computer system.

An overview of these stages is depicted in Figure 2-3.

Figure 2-3 Control system design stages.

After each step, the results are verified by simulation, or validated by
experiments, on the real embedded computer system. Verification
determines if “the product was built right” and validation determines if
“the right product was built”. Verification is a process of testing,

Physical
System

Modelling

Verification
by

Simulation

Embedded
System

Implementation
Realization

Verification
by

Simulation

Verification
by

Simulation

Validation
and

Testing

Contol
Law

Design

 2. A Structured Approach to Embedded Control Systems Implementation

28

inspecting, comparing, and analyzing, which determines whether or not
the product or model of a given stage, fully implements the specified
requirements of that stage. Validation is a verification process, which
comprehends the evaluation of any misfits between the system
requirements and the system, in the real-world. Validation demonstrates
the usefulness of the product, i.e., the embedded system. Validation
usually takes place at the end of a development trajectory of a prototype
or the final product and looks at the complete system as opposed to
verification. Complete validation requires the validation of the
requirements, in order to determine whether or not the right product was
built; validation of the validation. Verification and validation are
essential processes in stepwise refinement. A positive result of
verification or validation is a permit to go to the next stage in the
development process; otherwise further refinement is required.

The previously mentioned stages will be detailed in the following sub-
sections. It may then become clear that the notion of processes is essential
to each of these stages.

Physical-system modelling

The physical system, which is to be controlled, is preferably modelled in
a process-oriented way; since a physical system exists of ‘real-world’
processes, in which ‘real-world’ objects participate. The purpose of
physical-system modelling is to create a competent model of the system
under study. A competent model is a sufficiently detailed or qualified
model of the physical system that captures the relevant dynamic
behaviour of that system. It can serve as a kind of physical system
replacement.

Competent models are created for at least three goals, namely:

1. understanding the dynamics of the physical system,

2. structuring the functional and non-functional requirements,

3. deriving control laws.

2.2 Conceptual design for controller software of mechatronic systems

29

Hierarchically structuring models is necessary since models are of non–
trivial complexity. This also implies that the encapsulation of model
details should be provided at an appropriate degree, so that extensibility,
maintainability, and reusability can be achieved. Commonly, port-based
elements and block diagram elements with parameters that are directly
related to the physical properties of the system are combined to form one
model, which serves all three goals. In this, a model is composed of sub-
models. Each sub-model manifests a separate concern and is
encapsulated by well-defined interfaces. The connections between these
interfaces are signals or ports that exchange energy (bilateral or power
conjugate pairs of variables). The sub-model formulae are written in a
declarative style, i.e. as equations in the mathematical sense and not as
assignment statements. For an introduction in physical modelling, refer
to van Amerongen and Breedveld (2003).

Control law design

The control laws are subject to implementation in software. Often, a
simplified and linearized version of the physical-system models is used
for deriving control laws. The interdependencies between the physical
system design and the control law design make the modelling process
iterative. This puts an extra demand on model extendibility and
maintenance.

The following, rather common, procedure of control law design is
phrased:

• Generate competent model(s)
A competent model represents the physical system to be
controlled. The competent model (either reduced automatically
by linearization and/or order reduction, or diminished by hand)
serves as a substitute for the physical system when the control
laws are designed. It may be necessary to have more than one
simplified model to cover the whole workspace of the control
system.

• Verify competent model(s)
A competent model is simulated to check whether or not the

 2. A Structured Approach to Embedded Control Systems Implementation

30

model satisfies its goals. The model should be verified (i.e. its
simplification should sufficiently reflect the dynamics of the
system) and validated (i.e. compared with measurements on the
real system).

• Derive the control law(s)
Using standard procedures, a control law is now designed using
the model(s) acquired in the previous stage. It is also possible to
derive a set of control laws, each having its own operating
domain (state invariants). This can make each individual control
law simpler or give it a better performance. Additionally,
switching from one control law to the other must be designed. It
may be required that switching behaves smoothly from one
control law to the other: i.e. bumples transfer (Hilhorst et al.,
1994; van Breemen, 2001).

• Verify the control law(s)
Construct a test bed in which the control law is connected to the
model. Verify the control laws by performing simulations. Run
experiments in such a way that the demands on the controller
performance can be checked. Arriving at this stage, the control
laws, together with the model, can be used in the process of
embedded system implementation.

This procedure results in a process architecture as discussed in Section
2.2.1. The controller processes can be comprised of loop control-,
sequence control-, or supervisory control processes (Wijbrans, 1993). Loop
control performs digital control algorithms. Sequence control guides
sequences of operations, based on logical actions in time. Supervisory
control contains optimization algorithms (e.g. adaptive or self-learning) or
expert systems (e.g. knowledge-based) that generate (optimal) input
signals for the control loops or adapt parameters of the control
algorithms. The physical processes describe the behaviours of the
mechatronic system or the plant to be controlled. The supplemental
processes may provide user interaction, which can have influence on the
behaviour (or mode of operation) of the control process.

In this thesis, the design and simulation tool 20-sim is used for designing
and simulating physical-system models and for deriving control laws.

2.2 Conceptual design for controller software of mechatronic systems

31

Embedded system implementation

The entire process architecture is subject to implementation in software,
hardware, or in both. Physical processes are already part of the
hardware, e.g. the mechanics. Supplemental processes may also exist in
hardware or in software. The controller processes are subject to
implementation in software. Broenink and Hilderink (2001) proposed a
procedure to structure the implementation process for the controller part.
The procedure is divided into four concerns:

• Integrate control laws
The controller processes are the central and embedded part of
the entire system. After the control laws have been designed and
verified by simulation, they need to be implemented on the
embedded control computer. Control laws for different
situations are combined with sequence or supervisory control
processes. The computation of the algorithms is influenced by
the resolution and truncation of values or mathematical
functions. The errors caused by numerical integration methods
are also taken into account. The sensors and actuators are
assumed to be ideal. The traces of events are also considered
ideal; i.e. no event will be refused.

• Capture technology–independent functionality
Facilities for safety, maintenance processing, data repository,
and user-interaction functionality are added. These
supplemental processes should be independent of the behaviour
of the control processes. Note that supplemental processes
consume processor time, so these processes may have influence
on the overall performance of the system. Furthermore, the
execution framework of the control software should be
independent of the underlying operating system.

• Capture technology–dependent functionality
The specification is augmented with the non–idealness of sensors,
actuators, and events. The operation of sensing and actuating is
no longer considered ideal or faultless. Characteristics of the
input and output devices are added to the description, e.g.
delays, quantization, and discretisation on analogue-to-digital

 2. A Structured Approach to Embedded Control Systems Implementation

32

and digital-to-analogue conversions. The algorithms are no
longer faultless and should be protected by integrity constraints
to prevent or to handle illegal states. Hardware is drift-sensitive
in terms of aging, temperature, and wear-out. Furthermore, the
environment in which unforeseen errors can occur is not ideal,
especially when the non-idealness of events means that events
may not occur due to defects in the system. Escape routines are
required to take appropriate actions, such as error-recovery or
graceful termination.

• Capture timing characteristics
Timing is completely event related. The events on which the
control laws are performed are periodic or sporadic and the
computation is associated with completion-time. Therefore,
controller processes are usually hard real-time processes whose
outputs must be computed before the next sampling interval; i.e.
missing any deadlines will result in an error. Scheduling
techniques and/or algorithm optimization techniques may be
used to obtain a viable performance. The notion of priority is a
solution to deal with the limited processor time in order to
guarantee that processes will meet their deadlines. Priorities and
buffering techniques decouple critical processes from (non-real-
time) support processes. This also deals with communication
latencies between processes.

In each of these concerns, a good understanding of concurrency is
required. A change in the process architecture means a change in the
implementation and visa versa. A one-to-one mapping between the
process architecture and its implementation, while maintaining the
semantics of concurrency, makes the development trajectory predictable.

Realization

After the process architecture and the control algorithms have been
coded by the previous implementation phase, one can work towards
realization on the target computer and physical device.

2.2 Conceptual design for controller software of mechatronic systems

33

A stepwise approach is advocated, whereby a real embedded system is
divided into four main parts:

• Embedded computing—This manifests the embedded computer
system which consists of all computing functionality that
performs the control algorithms.

• I/O interfacing—Input-output (I/O) interface boards connect the
plant to the computer system. Specific operating system
resources, namely device drivers, are required for the program to
address these I/O interface boards. In case interface boards are
equipped with one or more processors, the control algorithms
may be distributed over the interface boards.

• User interfacing—The user interface connects the computer to the
human world. It may be required to monitor internal values
(signals and parameters) of the controllers or to command the
controller. This feature is often used for validating the systems
behaviour, maintenance, collecting data, or for external mode-
switching by the operator.

• The plant—The plant is the mechatronic system with actuators
and sensors connected to the embedded control system.

The process architecture, starting from a context diagram as shown in
Figure 2-1, takes these four parts into account during the design of the
control system. The controller processes are mapped on the embedded
computing part. The supplemental processes provide the user
interfacing. The communication relationships implement the I/O
interfacing. The physical processes are part of the plant.

The implementation on the real embedded system proceeds with
precaution and safety, so that the variables do not get out of bound, or
the system cannot hurt anyone or damage itself. Similarly, some parts of
the plant that are not yet available can be simulated.

Before the final realization, a method of testing the implementation of
embedded control systems can be carried out using a hardware-in-the-loop
simulator. Hardware-in-the-loop simulation (HIL simulation or HILS) is
characterized by the operation of real components in connection with

 2. A Structured Approach to Embedded Control Systems Implementation

34

real-time simulated components (Isermann et al., 1999). The input and
output of the real-time simulated processes show the same time-
dependent values as the real physical processes (Isermann et al., 1999;
Sanvido and Cechticky, 2002). The idea of HILS is to replace the real
physical process with a simulated physical process. The embedded
control system communicates with the simulated physical process, as if it
were communicating with the real physical process. The simulated
physical process performs the dynamic model, which represents a part of
the real plant. The mathematical model can be altered to induce faults,
which the controller process on the embedded control system must
anticipate. Any incorrect behaviour of the controller process cannot cause
damage and this improves the understanding of the behaviour under
different working loads and conditions. In Isermann (1999), two
additional variants of HILS were mentioned, which are

• simulated controller processes and real physical processes
(called control prototyping),

• simulated controller processes and simulated physical
processes.

These approaches may be required if the computer hardware and/or the
plant is not available, or the examination on behaviour before HILS is
considered.

HILS is a verification process that tests the completeness of the controller
processes and eventually ensures that the system is correct, even in
dangerous situations. The following two steps are missing in the
verification process which should be taken into account.

1. The physical-system model should be validated to ensure that the
model does represent the real system, even in critical situations.

2. The HIL simulation should be validated to ensure that the right
conditions are tested and no conditions are forgotten.

A diagnostic process can probe the responses from the controller
processes and the physical processes. The diagnostic process aims at
detecting correct/incorrect responses from the embedded control system.

2.2 Conceptual design for controller software of mechatronic systems

35

Fault generation and diagnostics can be automated by tools and the use
of a fault specification language (Sanvido and Cechticky, 2002). The
diagnostics of the embedded control system is orthogonal and should not
alter the design of the controller processes or the (simulated) physical
processes.

Figure 2-4 Context diagram refined with a diagnostic process
(communication view).

In Figure 2-4, a refinement of the context diagram in Figure 2-1 is shown
that is suitable for HIL simulation. The graphical notation is explained in
Chapter 3. Here, a diagnostic process observes the communication
between a controller process and a (simulated) physical process. If the
diagnostic process detects a fault, it can ask the controller process to
correct the error or ask it to stop. In order to complete the process
architecture, a compositional diagram must specify that these processes
are performed in parallel, as in Figure 2-2. This is explained in Chapter 3.

In the proposed methodology, any process in the process architecture can
be replaced by a real process or a simulated process. The hardware
interface of the embedded control system is between the controller
processes and the real or simulated physical and supplemental processes.
The arrows are channels that synchronize the processes on
communication and these channels encapsulate the hardware interfaces
from the processes. In the context diagram, channels are responsible for
sampling and actuation. The channel model abstracts away from the real
or simulated devices and are observed as (periodical or sporadic)
communication events at this stage of design. This channel model
simplifies the development of the process architecture. The channel
model is based on the CSP channel communication model and therefore

Physical Processes Controller Processes Supplemental Processes

Controller
Process

(Simulated)
Physical
Process

Diagnostic
Process

 2. A Structured Approach to Embedded Control Systems Implementation

36

the semantics of the process architecture are uniform. The controller
processes automatically block on these channels for the next sampling
interval. Once these channels become ready (e.g. after the device has
performed the sampling or actuation on a timed interrupt), the processes
continue and will be blocked until these channels become ready on the
next interval. These timed channels perform sampling and actuation at
precise intervals (jitter-free), whereas the wakeup of processes does not
have to be precise. Processes must make sure that their outputs are
available before their deadline, i.e. before the next interval. A CSP
diagram enables the user to understand the concurrent behaviour under
timing constraints, early in the control system design trajectory.

2.2.3 Stepwise refinement

Stepwise refinement is all about improving specifications. Refinement is
the process of adding information, whereby the requirements, design,
and implementation become more precise. This usually results in
deterministic structures of information, shaped in executable or
simulateable models. Intermediate or final models must be verified for
correctness and consistency between refinements or development stages,
before carrying on. The growth of information should be managed by
appropriate hierarchical structures (abstraction) and proper separation of
concerns.

The process of improvement involves the removal of uncertainties or
non-determinism by functional decomposition. Sequencing activities is
often applied to remove non-determinism. Sequential constructs, which
service non-deterministic (e.g. simultaneous or alternative) inputs and
outputs, are usually complex. Instead, abstraction should capture non-
determinism, which should maintain in the trajectory of refinement.

At the implementation phase, the right choices must be made to deal
with non-deterministic behaviours using appropriate deterministic
constructs. Such deterministic constructs are defined by CSP and are
discussed in Chapter 3 and 4. CSP comprises simple and busy-polling-
free constructs that boost the reactiveness and responsiveness of the

2.2 Conceptual design for controller software of mechatronic systems

37

program. The CSP paradigm helps a great deal in detecting and solving
pitfalls in the process of refinement. The solutions are orthogonal to the
design of the process architecture and can be applied in a later stage of
the design trajectory. For example,

• Parallel activities can be systematically sequenced for boosting
performance in circumstances where context-switching does not
contribute to better performance.

• Event handling can be prioritized so that urgent events are
handled first.

The real world is concurrent and not entirely described in terms of
deterministic structures and behaviours. For example, the occurrences of
sporadic or simultaneous events are non-deterministic in relation to time.
Non-determinism is a natural phenomenon in which behaviour can be a
requirement on its own. For example, buttons on a system can be pressed
by a user in any order or simultaneously, which should not cause an
error in the program. This is similar to a control system that has to
handle multiple control loops at multiple frequencies. With the right
abstraction, like using the CSP paradigm, concurrent behaviours can be
described and maintained in the process of stepwise refinement. In other
words, identifying deterministic and non-deterministic behaviours in a
system is fundamental to stepwise refinement. Stepwise refinement
should start with process-orientation, which provides the fundamentals
for capturing the desired behaviours of the system. At the design stage,
one should tend to stick to a more abstract, if necessarily non-
deterministic, definition of processes. The deadlock and livelock issues
will usually be addressed at this point. In this way, one can build robust
programs for which deadlock-freedom cannot be compromised by
implementation decisions at a later stage (Martin and Jassim, 1997).

Furthermore, the process model and channel model in CSP allow for
prototyping on the basis of partial products. Consequently, stepwise
refinement is a predictable process without engineering surprises. Each
step in the refinement undergoes process analysis where something
complex is studied and examined by separating it into more simple
processes, as opposed to synthesis.

 2. A Structured Approach to Embedded Control Systems Implementation

38

2.3 Processes are in control

2.3.1 Processes

The term ‘process’ is frequently used throughout this thesis. Several
different kind of processes are mentioned, such as controller process,
physical process, supplemental process, software process, hardware
process, compositional process, and more. These are processes in
different contexts with different objectives to achieve and different
implementations. However, they share the term ‘process’, which means
that they must have something in common.

In each different semantic of the word ‘process’, as can be found in
Webster’s dictionary, a common property is that a process describes
some progress whereby something is to be done with a certain goal to achieve.
Another property of a process is that it may or may not react on certain
events. The behaviour of a process describes the evolution of a system in
time and, in particular, how it interacts with its sub-systems and the
environment. Furthermore, a process is described by simpler processes.

A generalized definition of the term ‘process’ is as follows:

Definition (process): A process is an independent self-contained entity
that performs one or more task, within its private workspace, to achieve
a joint goal, and during its progress it may or may not interact (engage in
events) with its environment by means of communication.

This definition applies to the variety of processes, as mentioned in this
thesis, for which they can be viewed at the same level of abstraction. The
objective and behaviour of a process becomes clear when viewed in a
concurrent system where processes are viewed in relation to other
processes. See Section 1.4.2. Once a process is created it exists. The
relationships between processes determine when a process starts or
when it has to wait for an event to happen. Once a process has been
started, it is in progress (even when it waits for events) until it
terminates. A precise semantics of processes and their interrelationships
are elaborated on in Chapter 3.

2.3 Processes are in control

39

2.3.2 Identification of processes

In the context of software engineering, process identification is a term for
identifying tasks, being relevant to the system, with joint goals, and
operating in the same domain. This results in well-defined boundaries
that encapsulate the workspaces of the joint tasks. Each boundary
specifies a process. Each process has a unique identity. The identities
must prevail in all stages of the development trajectory; i.e. from
specification to its realization. Process identification is a hierarchical and
decompositional process, for which processes are described by simpler
processes. This results in a process architecture, which encompasses all
relevant functional aspects of the system at different levels of detail. A
process architecture is multidisciplinary. Typical domains in embedded
systems are software, computer hardware, mechanics, analogue electrical
elements, and FPGA’s.

The identification of processes starts with extracting canonical tasks that
are most obvious to be performed by the system. A task is a collaboration
of activities which aims to achieve a common goal within a (yet)
undefined boundary. A task is underpinned by a task description in the
solution domain of the application that is under construction. Those tasks
that are identified as building-blocks become processes in the process
architecture. The identification of processes is a stepwise refinement
trajectory until all the decisions and responsibilities that are taken by the
application are captured. The identities of processes are distinguished by
their existence and not by their descriptive properties. Process
identification is intuitive and it comes in various flavours, such as agents,
actors, capsules, active objects, etc. In this thesis we will abstract away
from these flavours. Instead, we will use the term ‘process’ as defined in
Section 2.3.1.

A task that fulfils one of the following observable patterns can be
identified as a process.

• the activities of a task operate on the same private data structure,

• a task that reacts on events (event-handling),

• a task has a particular deadline before completion,

 2. A Structured Approach to Embedded Control Systems Implementation

40

• a task has a different priority than another task,

• a task can be performed in any order with respect to another task,

• a task communicates with a task in a different domain,

• a task plays a unique role,

• or a task is mobile or autonomous.

Identifying processes can be performed in a systematic way by means of
task-based reasoning, communication-based reasoning, and
compositional-based reasoning. The latter two approaches identify the
interrelationships between tasks, which eventually results in process
identification.

• Task-based reasoning concerns the operational and logical
activities in the software system. This approach is an inside-to-
outside view of tasks, with the initial focus on the inside of a
task towards its boundary. Tasks with well-defined boundaries
are likely to be identified as processes. The boundary of a
process marks the goal and responsibilities of the inside tasks,
separated from other processes.

• Communication-based reasoning concerns the message-flow
between independent tasks. This message-flow oriented
approach is an outside-to-inside view of tasks. The message-
flow influences the behaviour of tasks without changing their
goal and responsibilities. This identifies two separate processes,
one at the sending-end and one at the receiving-end of the
message-flow. The objects that are required to establish the
message-flow are identified as channels or barriers. Identifying
channels or barriers will identify the boundaries of tasks and
thus this will eventually identify processes at each end of the
communication interrelationship (message-flow). Channels and
barriers are explained in Chapter 3.

• Compositional-based reasoning concerns the control-flow between
independent tasks. The control-flow can be composed by
sequential control-flows, parallel control-flows, and choices
between multiple control-flows. Tasks that spawn from other
tasks (forking), tasks that join to a single task, or decisions made

2.3 Processes are in control

41

by the tasks to perform sub-tasks, are symptoms of process
identification, based on their compositional relationships. Every
exception handling construct identifies two processes, namely
the task that can be in exception and the exception handling
task.

Process identification and process analysis are essential and an ongoing
discipline in the stepwise refinement of control system design. This is
essential not only for managing complexities but also to be able to
understand its implementation and realization.

2.3.3 Process Analysis

Process analysis is a study or examination of the behaviour of an entire
process and is divided into sub-processes. It investigates these sub-
processes and their interrelationships to create a picture of its behaviour
as a whole. In other words, process analysis partitions the system
behaviour into deployable and concurrent processes. This can be based
on particular approaches where processes are given the role of agents,
actors, capsules, or active objects.

Process analysis manifests in:

• Requirement analysis is the process of extracting the desired
requirements and structuring them into a comprehensive form.
The requirement analysis is, in its very essence, a functional
description of the system and relies heavily on task
decomposition. The structural units of this decomposition are
behaviours, functions, and tasks. These structural elements are
arranged into system models. The system model along with the
requirements model forms the system specification. System
models should meet the functional and non-functional
requirements at the same time (Douglass, 1999). Stepwise
refinement should obey the functional and non-functional
requirements of the system. Functional requirements are the
expectations of system behaviour as viewed from outside the
system. These requirements outline the transformation

 2. A Structured Approach to Embedded Control Systems Implementation

42

behaviour from input to the output of the system. Non-functional
requirements, also known as quality of service (QoS) requirements,
specify the necessary performance, reliability, robustness,
accessibility, usability, and safety of the functional requirements.
Non-functional requirements concern the environment in which
a system evolves. Non-functional requirements manifest
important design and implementation decisions.

• System analysis partitions the system models and requirements
into mechanical, electronic, and control components using
structural elements. In control system design, structured
elements are ideal physical model (IPM) elements, bond graph
elements, and block diagram elements. The system requirements
specify the constraints within these domains.

• Object analysis identifies the structural units of object
decompositions (classes and objects), identifies the
organizational elements (packages and components), and the
relations among these elements. Objects allocate the functional
structure of methods and data that implement the processes.

These analysis processes can be carried out in any interleaving order and
do not manifest a waterfall approach. Process analysis has a global
character applied to all stages in the development trajectory and
therefore prohibits discontinuities between the stages. Hence, the
absence of discontinuities determines the quality of analysis.

2.3.4 Process Architecture Design

The processes and their interrelationships that must be performed by the
system are the building-blocks that manifest a process architecture. A
process architecture describes the entire behaviour of a concurrent
system. A process architecture is a structured computational model that
is executable or simulatable.

A good architecture comprehends the essential and behavioural
framework on which all other aspects of the system depend. Its structure
connects the identified processes in the system, regardless if these

2.3 Processes are in control

43

processes reside in software or in hardware. Furthermore, a good
architecture simplifies the construction of the initial system and readily
accommodates changes forced by a steady stream of new requirements.

A process architecture abstracts away from objects. Objects structure data
and code while processes structure behaviour. Objects and processes are
related in the sense that processes can be implemented with objects and
objects are part of a process. Unlike objects, processes embrace
observable properties of a concurrent program, such as reactivity,
timeliness, responsiveness, priorities, and performance. These properties
are essential for creating real-time applications.

Figure 2-5 Interleaving between process architecture design and
control law design (state diagram).

Process architecture design is fundamental to control engineering. It is
always part of the mindset of the control engineer. The control system
design trajectory is a continuous interaction between process architecture
design and control law design. The start-point and end-point take place
at the design of the process architecture. See Figure 2-5. The design
trajectory starts with an initial process architecture, i.e. its context
diagram.

The user starts with identifying the control loops and identifies the
associated controller processes and physical processes. This may also
include supplemental processes. After the context is created each process
must be further refined by sub process architectures or detailed by a
specific design method. In this latter case the control laws are designed
for controller processes and port-based models are designed for
describing the physical processes. The verification of the process

Process Architecture
Design

previous stage

Control Law
Design

next stage

 2. A Structured Approach to Embedded Control Systems Implementation

44

architecture is the last step in this design trajectory. Verification of the
process architecture also implies verification of the integrity of processes
since the total behaviour should be satisfied before continuing to the next
stage. The next stage is usually the implementation of the process
architecture.

The implementation of a process architecture results in an execution
framework. Process architecture design is essential in control system
design and should be available to the user who is responsible for the
resulting execution framework. For example, the tool suite dSPACE
(2002) includes process architecture design using process diagrams, so
that the user can specify the concurrent processes that must be ported to
the concurrent target system. The user has some control over the
execution framework. However, the solutions are quite practical with no
formalism. On the other hand, the modelling and simulation tool 20-sim
does not include process architecture design and the execution
framework is entirely hidden by the simulator or hidden by the code-
templates when code generation is used. Consequently, the user has too
little influence on the execution framework. Nevertheless, 20-sim is
meant as a modelling and simulation tool with the capability of code-
generating control laws to C. The resulting C-code is commonly suitable
for third-party frameworks.

The semantics of process architectures should be based on a
mathematical formalism that allows model checking and formal process
analysis. A precise understanding of concurrency is important and
therefore CSP is used for this purpose. In this thesis, a process
architecture is represented as a CSP diagram which graphical notations
implement the CSP concepts as described in Chapter 3. In Chapter 6, 20-
sim is used together with CSP diagrams for designing and implementing
control software.

2.4 The THESIS method
THESIS prototypes a design method that aims specifically at the
realization of embedded control systems, in order to handle the inherent

2.4 The THESIS method

45

complexity of these systems. The main objective of THESIS is to support
the engineer in eliminating design and coding errors and to reduce
development costs. This is accomplished by the following three
mainstreams:

• Mathematical formalism
Formal handling of concurrent and real-time behaviour using a
mathematical formalism is important for proving that the
behaviour of the software satisfies the requirements. The
formalism should be operational in such a way that the
specification itself is executable. Wijbrans recommended the
theory of CSP, because this formalism can be used both for
designing and analyzing concurrent systems.

• Data-flow modelling
THESIS describes a data-flow-oriented graphical specification
method based on a Structured Analysis and Structured Design
(SA/SD) methodology for embedded real-time systems.
Wijbrans recommended the Hatley and Pirbhai method adapted
with rigorous syntax and semantics definition based on CSP.
The information hiding and encapsulation are taken from object-
oriented design and the dynamic behaviour is defined in a CSP-
like fashion. This method is used as the intermediate step in the
refinement trajectory between control system design and its
implementation.

• Transputers and the programming language occam
Wijbrans prototyped a stepwise refinement procedure that
transforms the control algorithm into efficient (concurrent)
occam code on transputers. The semantics and design rules that
Wijbrans imposes to the Hatley and Pirbhai specification
method and on entry design tools allows a straightforward
implementation to occam and transputers.

What is special about these streams is that they form a coherent system,
which bridges the gap between controller design and its realization in an
efficient way.

The implementation of these mainstreams is outdated for the following
reasons:

 2. A Structured Approach to Embedded Control Systems Implementation

46

• Transputers have become obsolete.

• Occam’s future is uncertain and other programming languages
(e.g. C, C++ and Java) are used by the majority in the embedded
software industry.

• The Hatley and Pribhai method does not really comply with the
current state of object-oriented technology and CSP technology.
Object-oriented software design methods and tools dominate
the market.

Although THESIS does not longer keep up with new developments, its
philosophy behind bridging the gap between controller design and its
realization is continued by this research. In this research, different roads
have been travelled to obtain innovation and enhancements that could
bring THESIS up-to-date. This research comprehends the following
significant changes:

• Transputers are replaced by different types of processors and
computer hardware, which are linked together on different
kinds of networks (e.g. TCP, CAN bus, transputer-links).

• The occam programming language is replaced by CSP libraries
for the programming languages C, C++ and Java.

• The Hatley and Pirbhai modelling language, as suggested by
Wijbrans, is replaced by CSP diagrams.

• The control engineering tool CAMAS has been replaced by its
successor, namely 20-sim. We continue to use the control design
concepts that is now implemented by 20-sim.

These replacements enhance THESIS with technology that is closer
related to the CSP concepts and object-oriented concepts. Each
replacement fits the chain of thought behind THESIS. In the following
chapters, this proposed methodology is presented as a standalone
solution, independent of THESIS.

2.5 Conclusions

47

2.5 Conclusions
The development of control systems is guided by concurrency. Existing
and main stream used control engineering tools do not allow the user to
explicitly specify the desired concurrency. Instead, much as possible is
automated and invisible to the user, as if the user should not much be
concerned about concurrency issues. However, the user is concerned
about concurrency, since the user is concerned about the performance
and customization of the system. This approach prevents further
refinement at the design level to make the design behave more efficient
on a particular embedded computer system. Ultimately, the user has
little control over the resulting code framework and its performance.
Such a framework is often too implicit and limited to a restricted class of
embedded systems. The proposed methodology aims at eliminating the
gap between control system design and its realization. This is based on
the sound and formal foundation of CSP concepts, represented by the
channel model and process model. Their abstraction and well-defined
semantics provide the guidelines to specify concurrency and to be able to
manage complexities during system design. Therefore, the notion of
processes is essential for control system design, due to the fact that
processes are adequate entities for deploying and observing behaviour in
the system.

In this chapter, the importance of process identification, process
architectures design, and process analysis were discussed. Process
identification is multidisciplinary. The design of process architectures,
based on CSP concepts, allows one to specify the desired concurrency
and event-driven behaviour in control applications. This implies that a
process architecture integrates different engineering and modelling
disciplines, each dedicated to specific processes. This results in a
concurrent framework of concepts, which has the ability to eliminate
discontinuities (read: gap) between the required disciplines during the
specification, design and implementation of the control system.

The use of CSP diagrams provides a powerful tool for capturing a variety
of concurrency related issues and giving them a formal semantics.
Concurrency issues are: multithreading, interrupt handling, exception

 2. A Structured Approach to Embedded Control Systems Implementation

48

handling, inter-processor communication, deadline guarantees (priority
scheduling), precise timing (sampling and actuation), reactivity and
responsiveness, safe-guarding and fault-tolerance. These issues are
integral part of CSP diagrams, which enable precise specification, model
checking, and process analysis on these issues. Its abstraction simplifies
reasoning about the overall behaviour. Consequently, design failures are
found early in the development phase.

After the context is determined and described by a context-diagram (i.e.
top CSP diagram), the stages physical-system modelling and control law
design are performed for the sub-processes. These stages are interleaved
until both are satisfied. After the completeness of the process architecture
is achieved, the design is implemented and tested. For systematic testing
a hardware-in-the-loop simulation can be used. Eventually, the
embedded control system is realized. The process architecture specifies
how the system must behave. This pre-knowledge is a measure for
success and likely saves time since engineering surprises are avoided and
the outcome is predictable to a large extent.

C H A P T E R 3

Graphical Modelling Language for
Specifying Concurrency based on CSP

3 Graphical Modelling Language for Specifying Concurrency based on CSP

3.1 Introduction
In this chapter, a graphical modelling language for specifying process
architectures is defined. The graphical modelling language is an
improved version of the one that was published in Hilderink (2002). A
design tool that supports this language is in development (Jovanovic et
al., 2004). This design tool was not yet mature enough to be useful.
Instead, a simple drawing tool was used.

The designs that are modelled with this graphical modelling language
are called CSP diagrams. CSP diagrams describe the blue-print of systems
on which concurrent hardware and software aspects in embedded
system engineering fall back. The graphical modelling language is
defined such that it allows specifying, designing, and programming
concurrent frameworks using a simple graphical notation. The language
abstracts away from hardware and software implementations at the
specification and design phases. On the other hand, the graphical
notation can be straightforwardly translated to hardware and software
implementations. This abstraction and refinement prevents a gap
between design and implementation. This is discussed in Chapter 6.

The graphical modelling language merges process-orientated and object-
orientated technologies. The graphical notation and their semantics are

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

50

founded on CSP concepts. These CSP concepts are a subset of the CSP
theory, which are practical and relevant for describing the behaviour of
concurrent systems. In this graphical modelling language, enhancements
have been incorporated, such as exception handling, priorities, timing,
and imperative facilities. These enhancements are essential for designing
real-time process architectures.

The semantics of the graphical notation and its association with CSP are
defined. The affiliation of the language with CSP enables formal analysis
of process architectures. Systematic techniques and rules are defined
which are part of the language and provide guidance for detecting and
reasoning about compositional conflicts (i.e. errors in design), deadlocks
(i.e. errors at run-time), and priority inversion problems (e.g.
performance burden) at a high level of abstraction and early in the
development trajectory.

The distinction between processes and objects separates different
concerns, such that, reasoning about behaviour and structure becomes
well-defined. The differences between processes and objects are
discussed in Section 3.2. Section 3.3 gives an overview of the
relationships in CSP diagrams. These relationships are described by two
processes and their interrelationships. Interrelationships are described in
Section 3.4. The relationships are distinguished between communication
and compositional relationships. Communication relationships are
discussed in Section 3.5. Compositional relationships are discussed in
Section 3.6. Hierarchies in process architectures are addressed in Section
3.7. Analysis techniques are defined in Section 3.8. These analysis
techniques support the user in funding conflicts in the design. The design
freedom that is incorporated in the proposed graphical modelling
language is discussed in Section 3.9. The process of refinement and
verification is elaborated on in Section 3.10. The conclusions to this
chapter are given in Section 3.11.

3.2 Processes and objects

51

3.2 Processes and objects
The notion of processes is inevitable in order to let object-orientation
succeed in concurrent systems. The notion of processes is explained in
this section with regards to objects.

A definition of processes was given in Section 2.3.1. Objects can be
defined as follows:

Definition (object): An object is a conceptual, visual, or real entity (or
thing) with crisp boundaries and meaning that encapsulates attributes
(data), behaviour (operations or methods), state (memory), identity, and
responsibility.

The definitions of a process and an object seem to have lots in common,
but they are different with respect to their semantics, abstraction, and
their interrelationships. In object-orientated methods, the term process is
often associated with the transformation of data values (Rumbaugh et al.,
1991). The CSP theory illustrates that this is not the whole truth of
processes. The distinction and the close relationship between processes
and objects can be illustrated by the following example.

Imagine a person drives a car. The car and the driver are objects in the
sense that they represent real things. But what about changing gear,
accelerating, or braking? These are processes, not objects, in which the car
and driver participate.

The car and driver are “real world” objects from a physical perspective,
but they are individual and self containing “real world” processes in the
process of driving. Every method in an object specifies a fragment of
behaviour and applies when the methods are invoked. This behaviour
has a meaning only when the method is processed, i.e. when the object is
part of a process. Objects may exist at the same time, but there is no
interrelationship which tells that they operate in parallel. Parallelism
concerns processes, not objects. Furthermore, an object cannot be
considered to be real-time. An object is said to be real-time only when it
participates in a real-time process. Therefore, one can put a “real-time”
tag on a process but not on an object.

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

52

In object-oriented programming languages, objects commonly implement
the code structure and data structure of a program. Concurrency is not
dealt with at all. The inclusion of multithreading makes the object-
oriented paradigm unnecessarily complicated, since threads are not
object-oriented. Obviously, threads are process-oriented. The notion of
processes, as for example those defined in CSP, provides concurrency at
an appropriate level of abstraction that scales well with complexity.

Processes and objects play different roles with different abstractions in
concurrent systems. Processes are concerned with concurrency and
behavioural structures, whereas objects are concerned with
implementation structures. In this thesis, a process can play the role of a
CSP process or a process instance. This is elaborated on in Section 3.5.4
and 4.3. Objects implement process instances, and process instances
implement CSP processes. Each of these roles comprises different
interfaces and different concerns, whereby CSP processes are more
abstract than objects.

Processes and objects are both message-passing driven with different
intentions. Objects can directly invoke services on other objects; the
invokee always follows the invoker. This type of message-passing is
synchronized on a sequential basis, namely run-to-completion. The next
service is performed after the previous one has completed. Processes
cannot directly invoke services on other processes. Processes can only
invoke services within themselves. They can be influenced by
communication with other processes using intermediate objects, i.e.
channels or barriers. Message-passing is synchronized on the basis of
run-to-rendezvous.

Processes and objects are distinct by their different kinds of relationships.
The relationships between processes are classified by communication
relationships and compositional relationships. The communication
relationships specify producer/consumer, client/server, or
communication-peers scenarios. The compositional relationships specify
parallel, sequential, alternative, or exceptional dependencies. The
relationships between objects are classified by generalization
(inheritance), association (invoker/invoke scenario), dependencies, and
aggregation.

3.3 The CSP diagram

53

Furthermore, the interface of a process is different from the interface of
an object. In this proposed methodology, a process has two separate
interfaces, namely the process communication interface and the process
instance interface. The process communication interface is used during the
execution of the process and the process instance interface is used before
or after the execution of the process. Both interfaces are safely
synchronized (thread-safe) and they cannot be used at the same time.
These interfaces are discussed in Section 3.5.4. An object has a single
interface that specifies a set of methods and variables, which the object
offers. These methods and variables are exposed to concurrency. Thread
synchronization constructs are required when objects are exclusively
shared by multiple threads. The thread synchronization constructs are
integral part of objects and must be explicitly implemented by their
methods. Processes are synchronized by constructs that implement the
communication relationships and the compositional relationships. See
Chapters 4 and 6

The proposed graphical modelling language captures this notion of
processes, which allows describing the (real-time) behaviour of
concurrent systems. At a lower level of abstraction, objects are required
to implement processes.

3.3 The CSP diagram
A CSP diagram is a graph of processes and their interrelationships,
which models a concurrent (sub-) system. CSP diagrams are used for
specifying, designing, and programming process architectures. The
graphical notations and their semantics are derived from CSP. The
interrelationships are displayed as lines. Processes are displayed as
circles, bubbles, or rectangles.

Two processes and their interrelationship form a relationship. Some
relationships are communication-oriented and some are composition-
oriented. Each orientation can be viewed as

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

54

• a communication diagram representing communicational
relationships; i.e. data-flow between processes,

• a composition diagram representing compositional relationships;
i.e. control-flow between processes,

• a hybrid diagram representing both communicational and
compositional relationships.

An overview of these relationships, which are defined by the graphical
modelling language, is given in Figure 3-1.

Figure 3-1 Overview of CSP relationships:
(a) communication relationships,
(b) compositional relationships.

The symbols at the ends of the communication interrelationships specify
the type of communication and the roles the processes play at the point
of communication. The symbols on top of the compositional
interrelationships are operators that specify different fundamental
behaviours in which the associated processes participate. Two processes
are related to each other by one compositional interrelationship and zero

P

P Q

Q

P Q

P Q

P Q

P Q

P Q

P Q

 Δ

Communication relationships Compositional relationships

channel
communication

barrier
communication

sequential

equally-prioritized
parallel

equally-prioritized
alternative

unequally-prioritized
parallel

unequally-prioritized
alternative

exception
handling

(a) (b)

P Q

state
communication

3.3 The CSP diagram

55

or more communication interrelationships. Thus, CSP diagrams
comprehend both data-flow and control-flow modelling.

CSP diagrams can be used together with object-oriented methods (Selic
et al., 1994; UML, 1998) and structured methods (Hatley and Pribhai,
1987; Ward and Mellor, 1985; Yourdon and Constantine, 1979). Other
modelling languages, such as the UML, are recommended for describing
the structural and functional aspects. The graphical elements can be
stereotyped in the UML, which enables the integration with the UML.
Consequently, one can omit the concurrency model of the UML and
replace it with CSP diagrams.

CSP diagrams are computational models that are executable in the sense
that they contain information suitable for simulation, code generation, or
model checking. A CSP diagram can be viewed as a kind of state
diagram. CSP diagrams scale well with complexity. Composing
processes (states of execution) in CSP diagrams scales linearly with
adding or removing processes or interrelationships. Therefore,
refinement does not cause state explosions.

Priorities are essential in making decisions, which improves the
performance of process architectures in systems with shared resources;
e.g. a single processor or a communication channel for which
interleaving is imposed. The CSP theory abstracts away from priorities,
but it allows us to add priorities by way of refinement. The graphical
modelling language includes equally-prioritized and unequally-
prioritized operators. These operators include fairness and unfairness iu
the process architecture. These operators apply to true-parallelism (i.e.
processes distributed on multiple processors) and semi-parallelism (i.e.
processes on a single processor).

The graphical modelling language inherently supports techniques for
checking the correctness of CSP diagrams. With these model checking
techniques, the user is able to determine and to reason about failures,
mismatches with the user’s mindset, deadlocks, and priority inversion
problems in a design. Model checking can be automated by the design
tool or performed by other formal model checking tools that are
available. Feedback from these model checking tools can support the

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

56

user in understanding and solving errors or conflicts in the design of the
process architecture. Furthermore, the user should be aware of the
semantics of the notations, but the user does not have to be aware of the
underlying mathematics.

3.4 Interrelationships
The simplest interrelationship is concurrency, whereby processes exist at
the same time and possibly communicate with each other. Processes
execute and synchronize in several ways, which can be expressed by
interrelationships between the processes. The interrelationship is
depicted as a labelled line (or edge) between two processes, as shown in
Figure 3-2. The figure shows a relationship of two processes connected
by an interrelationship on which both processes depend. Each
interrelationship represents a synchronization construct in the process
architecture.

Figure 3-2 Interrelationship between processes.

Special symbols can be attached to the ends of the line to indicate a
directional interrelationship between processes. It is important to note
that the line should be seen as distinct from these symbols. The line itself
is undirected because events are symmetric (Roscoe, 1998). The line
renders an event in which both processes engage. Depending on the kind
of interrelationship, the associated event can be a communication event,
termination event, exception event, or a timeout event. The symbols are a
gloss on this. They indicate the polarization of message-passing or they
assist in composing processes.

A relationship is identified with id and is related to a specific Type. These
attributes are combined with “:” as one label, which is refered to as an

⊕
+ symbol + + symbol +

id:Type [timing]

id:Type id:Type

3.4 Interrelationships

57

identifier label. The id attribute specifies a unique name that refers to the
declared relationship or process. The operator and identifier labels are
floating labels and are attached with a thin line to the centre of the
interrelationship. Like processes, these labels can be moved in the
diagram. The symbols, operator, identifier, and type, specify the type of
interrelationship between two processes.

The timing attribute is optional (see brackets) for communication
relationships. This attribute can be used to specify timed communication
events. Timed communication events offer the ability to specify the real-
time behaviour of the process architecture. The timing attribute can
contain an exception parameter, which will be thrown by the
interrelationships to the associated processes when the specified deadline
was not met. The timing attribute is not defined for compositional
relationships. This option is reserved for future use.

The symbol ⊕ represents an operator, which is strictly used in
compositional relationships. An overview of the possible operators was
shown in Figure 3-1b. The operator is depicted on top of the
compositional interrelationship line and the identifier label is usually
depicted below the line. Communication interrelations have no operator
and it is replaced by the identifier label located on top of the line.

The Type attribute of the interrelationship is one of the following types:

• primitive data type,

• class name for an object type,

• service interface type,

• reserved class name representing barrier synchronization,

• reserved class name representing a compositional process.

The first three types are used in communication relationships and the last
two types are used in compositional relationships. Primitive data types
and object types address data channels. Service interface types address
call channels. The reserved class names are omitted from the identifier
label, because these are redundant or derivable from the operator or
symbols.

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

58

In Figure 3-1 and in other examples, the identifier labels on
compositional relationships are hidden. This means that they are
anonymous or simply invisible. Anonymous relationships are useful for
sketching a compositional diagram without worrying about the exact
names. Identifier labels can be specified and visualized by the user until
later in the design trajectory. Identifiers that do not directly concern the
user can be automatically generated by the design tool. These identifiers
remain hidden. The naming convention in CSP diagrams is the same
convention as used in Java.

Each process has a unique identifier id with a (non-unique) Type depicted
in the rectangle. The Type attribute is the process class name from which
the process is instantiated. A process class can be used to instantiate
multiple processes with the same behaviour. In this thesis, several
examples use capital letters P, Q, R, S, T, and U to identify distinct
processes. These are equivalent to respectively p:P, q:Q, r:R, s:S, t:T, and
u:U. Label P is a short notation for p:P. These abbreviations are used to
simplify the related algebraic expressions.

3.5 Communication relationships
Two communicating processes participate in a communication
relationship. A communication relationship is defined as follows:

Definition (communication relationship): A communication relationship is
a labelled and directed relationship, which represents message-passing
between a sender process and a receiver process.

Three classes of communication interrelationships are specified, namely

• channel communication,

• barrier communication,

• state communication.

Channel and barrier communication perform message-passing between
executing processes. State communication performs message-passing

3.5 Communication relationships

59

between non-executing child processes and their parent process via state
variables.

3.5.1 Channel communication

Message-passing between processes via channels is symbolized by a
solid arrow, as depicted in Figure 3-3.

Figure 3-3 Channel communication relationship.

The arrow head symbol ‘►’ is attached to the receiver of a message and
the tail of the arrow is attached to the sender of the message. This does
not necessarily imply that data is moving strictly from tail to head at
communication. Data may very well be returned at the end of the
invocation. Furthermore, the communication relationship specifies that
communication can take place between two processes (i.e. two-way)
whereas it does not specify exactly when communication takes place. The
actual channel invocations are specified by a few primitive
communication processes, as described in Section 3.6.8. Both
participating processes must rendezvous, whereby the processes are
willing to engage in the communication event. In some circumstances,
buffered channels can be used to solve particular performance issues.
These issues are discussed in Section 3.8.5.

The identifier id is the name of the channel and Type expresses the type of
message passing. The timing parameters ts, T, and Exception are optional.
The occurrence of communication events can be set to a specified
moment in time or at periodical moments in time; i.e. respectively @ts,
and @ts,T. The parameters ts and T are in microseconds, where ts is the
absolute start time and T is a periodical interval relative to ts. A channel
with timing parameters is called a timed channel. In case an Exception

id:Type
 [@ts [,T][,Exception]]

Producer/
Client

Consumer/
Server

P Q

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

60

parameter is specified, an instance of Exception is thrown to the related
processes when one or both processes are ready after the specified time ts
or ts+n.T with

t ts
n n n

T
+⎧ ⎫−⎡ ⎤∈ ∧ =⎨ ⎬⎢ ⎥⎢ ⎥⎩ ⎭

The arrow designates the role of the processes in the relationship. A
process at the tail of an arrow can play the role of a producer or client. A
process at the head of an arrow can play the role of a consumer or server.
Thus, channel communication specifies producer/consumer or
client/server relationships.

Figure 3-4 Channel communication scenarios.

Producer/Consumer relationship (data channels)

A producer/consumer relationship is based on data channels between a
producer and consumer process. The Type of the data channel specifies
either an object or a primitive data type that can be passed from producer
to consumer. Data channels are unidirectional, i.e. data can be passed in
the direction of the arrow.

An example of a producer/consumer relationship is shown in Figure
3-4a. In this example, length:Integer specifies a channel name length that
can pass objects of type Integer. Or identifier label length:int specifies a
channel that can pass integer data primitives of type int.

length:Integer

chan:OnOff

(a) Producer/Consumer data channel communication

(b) Client/Server call channel communication

consumer:Cons producer:Prod

Client:Clnt Server:Srvr

3.5 Communication relationships

61

A data channel can be one of two possibilities, namely:

• unbuffered channel (rendezvous),

• buffered channel (fifo, super-sampling, sub-sampling, etc.).

Unbuffered channels usually provide an optimal reactive behaviour, as
outlined by the process architecture. Buffered channels can improve the
performance of a process architecture in circumstances where unbuffered
channels cannot sufficiently decouple multiple frequencies. This is
discussed in Section 3.8.5.

Client/Server relationship (call channels)

A client/server relationship is based on call channels between a client and
a server process. Type indicates a service type, which specifies a set of
methods.

The client process can request a method that is a member of the service
type of the call channel. The requested method can only be accepted by
server processes that implement the service type. When a method is
accepted it is performed by the server process. A method can be
provided arguments and a return value. Therefore, call channels can be
bidirectional, i.e. data can be passed in both directions of the arrow. The
client process can send data as arguments along the call to the server
process, and on the completion of the method the resulting data can be
sent back to client process.

In Figure 3-4b, the service type OnOff specifies the methods on() and
off(). Srvr must implement these methods and it must be willing to
accept any calls.

Consistency between a service type, server, and client can be checked. A
server that implements service type S may accept certain requests A in S,
thus A S⊆ . The client process may request a set of calls, denoted by C,
on a call channel with service type S. It is important that C is a subset of
A otherwise certain calls will never be accepted, thus C A⊆ ; otherwise

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

62

C S A⊆ − and this would result in a deadlock or livelock. This design
error is called a service conflict.

Identifier Labels

Identifier labels on communication interrelationships are floating labels,
which are connected to arrows in various ways. When the arrow is
connected between processes, the identifier label is connected with a thin
line to the centre of the arrow. On the other hand, an identifier label can
be used to create a joint for shared communication interrelationships or
to relay communication interrelationships.

Figure 3-5 shows three different ways in which processes can be
connected via channels. These three representations do not change the
semantics of channel communication. Figure 3-5a shows the identifier
label on top of a channel. Figure 3-5b shows that the label can be used as
a joint between two parts. Labels can be duplicated and each duplicate
refers to the same instance. Figure 3-5c illustrates two processes
separated from each other via duplicated labels. This notation is similar
as for barriers (Section 3.5.2) and state variables (Section 3.5.3).

Figure 3-5 Three ways to connect processes via a channel:
(a) directly connected,
(b) via a label,
(c) via label duplicates.

Shared channel communication

Channels can be shared between two or more processes. The arrow may
consist of branches of multiple tails and/or multiple arrow heads. This is

c:int
P Q

c:int

P Q

c:int

P Q

c:int
(a) (b) (c)

3.5 Communication relationships

63

depicted as a fish bone. Four different channel configurations are
supported, as shown in Figure 3-6.

The configuration displayed in Figure 3-6a depicts channel
communication between two processes, as previously discussed. The
configurations in Figure 3-6b and 3-6d specify a choice of service
between multiple writers. The configurations in Figure 3-6c and 3-6d
specify a choice of delivering messages between multiple readers. The
choice is non-deterministic in relation to time.

Figure 3-6 Channel configurations.

On a shared channel, the service or delivery between multiple readers
and writers can be uncertain or unfair. For example, in practice and in a
worst case scenario, a reader may read all the time and other readers
have no chance to get a message. This is known as starvation. A fair
queuing policy can prevent starvation between the alternating processes.
The graphical modelling language has the taxonomy for detecting and
reasoning about this pathological problem. The implementation of
shared channels is concerned with the fairness and the performance of
the program. This is elaborated on in Chapters 4 and 5.

The configurations shown in Figure 3-6b, 3-6c and 3-6d virtually swap to
the configuration in Figure 3-6a. Shared channels do not broadcast

T

c:int c:int

c:int c:int

(a) One2One (b) Any2One

(c) One2Any (d) Any2Any

P Q

Q

U

P

R

P

S

Q

R

P

S

T

U

Q

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

64

messages. In case messages must be broadcasted over many channels, a
delta process must be used. A delta process reads from an input channel
and then outputs the data on multiple output channels in parallel. Delta
processes are only useful with data channels. Delta processes can be
implemented in two ways: as an explicit or as an implicit delta process.

Figure 3-7a illustrates the use of an explicit delta process.

Figure 3-7 Shared data channel and broadcasting messages,
(a) broadcasting with an explicit delta process,
(b) broadcasting with an implicit delta process.

An explicit delta process is part of the compositional relationships. This
implies that the delta process can only terminate when it is told to
terminate. This requires a poison token, an additional channel, or
poisoning channels in order to stop the delta process. A poison token is a
special token that is send via the input channel. Once the token is
received, the delta process will terminate. An additional stop channel is
also a solution. Both solutions lead to graceful termination (Welch, 1989).
Poisoning channels is a technique that allows channels to throw
exceptions to the associated processes when they are willing to
communicate on a poisoned channel. The exception handling must
gracefully terminate the delta process.

A simplified solution is the implicit delta process. In Figure 3-7b, an
implicit delta process is depicted as a black circle from which
broadcasting spawns. This black circle has already been shown in the
context diagram in Figure 2-4. This delta process is not part of the
compositional relationships of the processes that participate in the

(a)

R

P

S

T

U

Q ∆

R

P

S

T

U

Q

(b)

⇒

3.5 Communication relationships

65

communication relationship. Therefore, an implicit delta process is not
explicitly part of the compositional relationships and no explicit
measures are required to stop the delta process. The resulting framework
can take care of starting and terminating implicit delta processes.

Unconditional or conditional channel communication

The previous communication relationships express unconditional
communications, i.e. if both participating processes are ready for
communication then both are committed to communication, for which
they engage in a communication event and withdrawing is impossible.
Conditional communication is a circumstance whereby the readiness of the
channel is required as a condition. The readiness is true when at least one
process is willing to communicate over the channel. A process at the
conditional end of the channel may commit in communication when the
other side is willing to communicate or it may withdraw when this
condition is not met. Conditional communication is specified by the
alternative relationship. See Section 3.6.4.

3.5.2 Barrier communication

Another communication relationship is the barrier synchronization, in
which two or more processes participate at the same time. A fixed
number of processes are required to synchronize their execution at some
point before proceeding. A barrier is depicted as a fishbone of arrows
between two or more processes (i.e. multi-way). Each end of the arrow is
symbolized with a diamond ‘♦’ symbol; shaped by concatenation of ◄
and ►. A barrier has only one type, namely Barrier. This type is reserved
for the barrier relationship and is omitted from the identifier label. See
Figure 3-8.

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

66

Figure 3-8 Barrier synchronization relationship.

The timing parameters ts, T and Exception are optional and are used in
the same way as timed channels, as discussed in Section 3.5.1. A barrier
with timing parameters is called a timed barrier.

An example of six processes that synchronize on a single barrier is
depicted in Figure 3-9.

Figure 3-9 Barrier synchronization.

When all processes reach the barrier synchronization, the barrier
construct can communicate information between the processes in a
unidirectional or bidirectional way. All processes continue after
communication is performed.

A barrier synchronization pattern can be described in terms of a protocol
of channel communications (Roscoe, 1987). The protocol is described as a
network of parallel processes that communicate with each other via
channels. Therefore, a barrier can encapsulate a sub-diagram, whereby its
completion is observed as a communication event.

3.5.3 State Communication

State communication is used to initialize state values and to pass state
values to other processes instances before or after they are executing.

b:Barrier
R

P

S

T

U

Q

id
[@ts [,T][,Exception]]

P Q

3.5 Communication relationships

67

State communication is formulated as follows:

Definition (state communication): State communication is the ability of
the parent process to communicate states between itself and its child
process instances.

State communication requires state variables to communicate the
postconditional state of one process instance to the preconditional state
of another process instance. Note that the term ‘process instance’ is used.
A state variable is defined as follows:

Definition (state variable): State variables are variables that manifest a
precisely measurable property or a deterministic attribute, which
characterizes the state of a process, independent of how the process was
brought to that state.

Preconditional and postconditional states are formed by state variables.
A preconditional state must be true or valid before the process executes
and the postconditional state must be true or valid after the process has
terminated. In case the preconditional or postconditional states are
invalid, the results of the process can be unpredictable or wrong.

State communication is only allowed before or after the execution of
child processes. State communication involves a state handling method
that can initialize or return state variables. State communication does not
describe concurrency aspects; it must not be used for process communication.
Furthermore, state communication does not establish communication
events, since it relates processes to state variables and not processes
directly to each other. Note that parallel processes must exchange data
using channels or barriers, and not via state variables.

A parent process has hold of the process instances of its child processes.
The parent process can update the preconditional state of its child
processes according to the process instance interface. State variables that
are not specified by the process instance interface cannot be updated by
the parent process. See Section 3.5.4. Public state variables can be
updated by the parent process before the compositional relationship (to
which the process belongs) is executed. Public state variables can be

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

68

retrieved from the child process after the compositional relationship has
terminated.

Simultaneous updating of the same state variable is forbidden and
prohibited by safety rules. Safety rules are described in Section 3.8.1.
These rules declare that state variables are implicitly synchronized by the
sequential constructs in the process architecture. This is similar to using
variables in a sequential programming language.

The initialization of a process is depicted with an open arrow (i.e. open
arrow head) towards the process. See Figure 3-10a. In this example, the
state variable is identified as id:Type. The content of the state variable is
passed to Q right before the relationship (to which Q belongs) is
executed. The Type attribute is a primitive data type or an object type
(class).

The state update of the parent process is depicted with an open arrow
between a child process and a local variable. This arrow is directed from
the child process towards the local variable. See Figure 3-10b. In this
example, the variable id is updated immediately after P has terminated.

A state variable of a child process can be used to initiate another child
process. See Figure 3-10c. This example is a simplified version of Figure
3-10a and 3-10b together. It depends on the compositional
interrelationship between P and Q whether or not

• P updates Q via id (in sequence)

• or Q is updated by id before P updates id (in reverse sequence).

Figure 3-10 State initialization:
(a) child process initialization,
(b) parent process state update,
(c) state passing between child processes.

id:Type Q P id:Type

(a) (b)

P Q

(c)

id:Type

3.5 Communication relationships

69

Figure 3-11 shows two processes performing the processes f and g. This
example shows state dependencies between f and g.

Figure 3-11 Example of state initialization.

This example depicts the following equations:

(,)
(, ,)

=
=

z f x y
v g y z w

A cyclic dependency, as in Figure 3-12, does not cause an algebraic loop.
Be aware that the states can be updated with a shift in time. This is
determined by the compositional relationships.

Figure 3-12 Example of algebraic loop.

This example depicts the following equations:

(,)
(,)

z f x y
y g z w

=
=

Possible solutions are,

() ()
() ()
() ()

1

1

1 1

(,) ; (,)

(,) ; (,)

(,) (,)

−

−

− −

= =

= =

= =

i i i i i i

i i i i i i

i i i i i i

z f x y y g z w or

y g z w z f x y or

z f x y y g z w

f g

x:float y:float w:float

z:float

z:float
f g

x:float y:float w:float

v:float

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

70

The indexing of the state variables denotes a sequence between the
current (i) and the previous (i-1) values. This sequence prevents race
hazards on state variables. Rules for safely sharing state variables are
described in Section 3.8.1.

A state variable can be initialized with a start value. Figure 3-13
illustrates this in three different ways. In the examples, the state variable
x is allocated in the parent process of P. P is initiated by x right before
executing P and x is updated right after P has terminated. Figure 3-13a
shows a state variable x being initiated with value 0.0 when the process is
constructed. The state variable is not re-initiated on the next run of P. It
remembers the previous value. Instead of using two separate open
arrows between a process and a state variable one can use a single
bidirectional open arrow. See Figure 3-13b. Figure 3-13b illustrates
something similar, whereby x is initiated with the value of another
variable x0. This notation is useful when x0 is documented as the
(constant) initial value of the process and x is a variable in the workspace.
In case a variable needs to be initiated each time before the next run, the
parent process Q must initiate the state variable x of its child process P.
This is illustrated in Figure 3-13c.

Figure 3-13 Initiating state variables:
(a) initiate x once with value 0.0,
(b) initiate x once via state variable x0,
(c) initiate x before every run of process Q.

Q

P

x=0.0:float

(a)

P

x=x0:float

x0=0.0:float

(b)

P

x:float

(c)

x0=0.0:float

x

3.5 Communication relationships

71

One can easily distinguish between channel communication and state
communication. For example, Figure 3-14 shows a process that is
connected with solid arrows and open arrows.

Figure 3-14 Example of mixed channels and variables.

In this example, the process communicates with other processes via the
solid arrows. State communication is performed by the open arrows and
they are performed right before P is executed and right after P has
terminated. Obviously, the labels c, d and e belong to the process
communication interface and the labels x, y, and z belong to the process
instance interface. Solid arrows and open arrows cannot be connected.
Connection is only possible via primitive communication processes,
which are discussed in Section 3.6.8.

3.5.4 Process interface

The process interface consists of two separate interfaces, namely the
process communication interface and the process instance interface. The
process communication interface comprises a set of public channel-ends
and barrier-ends. The process communication interface can specify a
protocol of communication via these ends, which describes its behaviour.
The process instance interface defines a set of public state variable-ends
that are responsible for initializing the preconditional state or for
retrieving the postconditional state of the process instance. These
channel-ends, barrier-ends, and state variable-ends are called the ports of
the process interface.

The process communication interface is used during the execution of the
process and the process instance interface is used before or after the
execution of the process. They cannot be used at the same time.

P

c:int

d:float
e:double

x:int

y:float
z:double

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

72

Each pair of ports that is supposed to be connected must be compatible.
Incompatible ports cannot be connected. For example, a channel-output
of message type Integer cannot communicate with a channel-input of
message type Float. Also, a producer process cannot communicate with a
server process, because the producer process requires a data channel and
the server process requires a call channel. Furthermore, state variables
can be connected to other state variables of the same type.

Floating identifier labels that are specified as ports in the process instance
interface and the process communicating interface must be used to
connect the process with the outside world. These ports can be depicted
as identifier labels on the edge of the process in the upper CSP diagram.
This was already shown in Figure 3-13c. The identifier labels are called
port labels. A port label and the corresponding floating identifier label
must have the same name and of the same port type. Port labels are
annotated by a thin line to the end of a communication interrelationship
and the entry/exit point of the associate process. Edge labels are essential
for the user to know to which port or state variable the interrelationship
is connected. Examples of data channel, call channel, barrier, and state
communication are given in Figure 3-15. These annotations can be
visualized or hidden at wish.

In Figure 3-15a, the producer process performs an output on data channel
length via port size. The consumer process performs an input on port len.
These outputs and inputs are discussed in Section 3.6.8. In Figure 3-15b,
the client process requests a call on the call channel chan via port out. The
server process accepts the call via port in. In Figure 3-15c, the processes
one and two synchronize on the barrier-ports bar and join. They are linked
together via barrier. In Figure 3-15d, process one provides data for
initializing process two. The date is passed from y to z via x.

3.5 Communication relationships

73

Figure 3-15 Process interfaces shown by label annotations.

Figure 3-16 illustrates examples of processes P and Q that are connected
respectively via floating identifier labels and their ports. The floating
identifier labels and port labels establish a connection in a hierarchical
architecture.

Roscoe described that: “A CSP process is completely described by the
way it can communicate with its external environment. In constructing a
process we first have to decide on an alphabet of communication events –
the set of all events that the process (and any other related process) might
use. The choice of this alphabet is perhaps the most important modeling
decision that is made when we are trying to represent a real system in
CSP.”. The process communication interfaces represent the alphabets of
the processes. Therefore, the design of a communication diagram is most
important. The communication diagram will determine the alphabets (or
process communication interfaces). The compositional relationships will

length:Integer

chan:OnOff

(a) Producer/Consumer data channel

(b) Client/Server call channel communication

consumer producer

client server

size:Integer
len:Integer

out:OnOff
in:OnOff

barrier:Barrier

(c) Barrier communication

one two

bar:Barrier
join:Barrier

x:int

(d) State communication

one two

y:int
z:int

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

74

combine these alphabets to new alphabets. These alphabets should be
consistent with the specification. These alphabets are required for
describing the appropriate parallel processes. See Section 3.6.3.

Figure 3-16 Examples of edge and floating labels.

Channel and barrier ports make up the alphabet of communication
events, not the state communication ports.

one

length:Integer

chan:OnOff

(a) Producer/Consumer data channel communication

(b) Client/Server call channel communication

consumer producer

client server

size:Integer
len:Integer

out:OnOff
in:OnOff

P

P

Q

Q

size:Integer len:Integer

out:OnOff in:OnOff

barrier:Barrier

(c) Barrier communication

one two

bar:Barrier
join:Barrier

P Q bar:Barrier join:Barrier

x:int

(d) State communication

two

y:int
z:int

P Q y:int z:int

3.6 Compositional relationships

75

3.6 Compositional relationships
Compositional relationships are a kind of relationships between
processes that are useful for describing the execution order of
communicating processes. Compositional relationships are defined as:

Definition (compositional relationship): A compositional relationship is a
labelled relationship between two processes whereby the label is a binary
operator that expresses their compositional behaviour.

Figure 3-17 shows two processes in relation to each other. This represents
a composition of two processes, which semantics are described by the
operator ⊕ on top of the connection.

Figure 3-17 Compositional relationship.

Action bodies (e.g. actionP and actionQ) are optional and these can be
specified next to the process when at some point in the process
architecture a state change is required. The state change is part of a state
machine specification (automaton) that is local to the parent process.
Guard bodies (e.g. guardP and guardQ) are required when the processes
are related to a choice. Action and guard bodies are discussed in Section
3.6.1.

The operator ⊕ can be one of the following sets:

• { , , , , , , }⊕∈ → ← Δ Δ when no guard bodies are specified,

• { , , }⊕∈ otherwise.

The operators { , , } require the specification of guards on all
participating processes. For the other operators, guards have no effect.
The operators with a small arrow on top of the symbol are directed
operators, whilst the remainders are undirected operators.

actionP/guardP actionQ/guardQ

P Q
id

⊕

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

76

The identifier label id attributes a unique name of the construct.
Compositional relationships are typed by their operators. For
example, operator symbol is equal to id:Parallel, whereby Parallel is a
reserved class name for the parallel operator. Other reserved class
names are Sequential, Alternative, PriParallel, PriAlternative, and
ExceptionCatch. The Type attribute is redundant and is therefore
omitted. In Chapter 4, it will be shown that these types represent
special processes or constructs in Java.

Each compositional relationship is explained in Section 3.6.2 till Section
3.6.5. The identifier labels are anonymous and omitted in the next
sections.

3.6.1 Automaton

The behaviour of a process architecture depends on state changes in
time. State changes can be specified by state communication or using
action bodies. Guard bodies are used to take decisions so that the process
architecture behaves in one way or the other. An action body or a guard
body can be specified next to a process connected with a thin line to
show its association with the process. This is illustrated in Figure 3-17.
Only one action body or guard body can be specified per process. The
action and guard bodies are not an integral part of the associated process
but they are part of a local state machine or automaton; e.g. to control
repetitions (Section 3.6.4) and conditional communication (Section 3.6.6).

Action bodies contain operations that change variables in the process; i.e.
in the parent process of the process to which the action body is associated
with. An action body will be executed right before the process will be
executed. For example, Figure 3-17 specifies the algebraic expression
(;) (;)P Qaction P action Q⊕ . The scope of variables is determined by the
parent process in which they are declared. The updating and reading of
state variables by action bodies follow certain rules. These rules are
similar for state communication in Section 3.8.1. Instead of open arrows,
the action bodies use assignment statements.

3.6 Compositional relationships

77

The following two methods illustrate two ways to increment a variable
that is used to create an imperative construct, which is part of a state
machine. An imperative construct can be created by an action body and a
floating variable, or it can be created by state communication. See
respectively Figure 3-18a and 3-18b. Combinations of the two methods
are also possible.

Figure 3-18 Two examples of incrementing a variable:
(a) incrementing by an action body,
(b) incrementing by a process.

Here, the increment statements i++ and y++ (in P) are short notations for
i=i+1 and y=y+1. These increment statements require bidirectional state
communication. In Figure 3-18a, the variable i will be incremented right
before P is executed. In Figure 3-18b, the variable i will be incremented
right after P has terminated.

3.6.2 Sequential relationships

A sequential relationship (SEQ) between processes P and Q is denoted by
the label ‘→ ’. This sequential composition is written as P→Q. This has
strong similarities with the CSP single action transition P √⎯⎯→Q. This
process will behave as Q if P has successfully terminated (√-event)
otherwise this process behaves as P. These semantics are relaxed by
saying P is executed before Q, which provide more design freedom. This
relationship (being a process) terminates when P and Q successfully
terminate. The sequential relationship is depicted in Figure 3-19.

P i:int

i++

y:int

P i:int
y++

(a) (b)

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

78

Figure 3-19 Sequential relationship.

A sequential relationship is written as (P,Q,→). A sequential relationship
of more than two processes can be represented in the same way, for
example (P,Q,R,S,→). See Figure 3-20a. Relationship (P,Q,R,S,→) also
represents other partial relationships, such as, (P,Q, →), (P,R,→),
(P,S,→), (Q,R,→), (Q,S,→), (R,S,→), (P,Q,R,→), (P,Q,S,→), (P,R,S,→)
and (Q,R,S,→). Only tuples can be depicted in a CSP diagram. See Figure
3-20b. Thus, Figure 3-20a implies 3-20b.

Figure 3-20 (a) SEQ construct,
(b) over-specified SEQ construct.

This example is written as

() () () ()(), , , , , , , , , , , , ,P Q R S P Q R S P Q Q R R S→ → → ⇔ → = → → → →

A sequential composition in CSP is precisely described by the algebraic
expression P;Q. This expression defines a process that behaves as P and
after P terminates it behaves as Q. The expression P;Q is a special case of
P→Q. The symbol ‘→ ’ gives more specification freedom than ‘;’. One
can specify P→R without knowing whether or not it must be P;R or
P;Q;R. For example, the partial relationships in Figure 3-20 cannot all be
represented with ‘;’. It is obvious that (P,S,→) does not represent P;S.

(a)

(b)

P Q R S

P Q R S

P Q

3.6 Compositional relationships

79

The ‘;’ and ‘→ ’ operators share common properties; e.g. they have no
symmetry laws. The following shows when ‘;’ can be used for ‘→ ’.

The relationship (P,S,→) can be written as

(), , , \P X S X→

where X is a set of processes that can be found on the longest path
between P and S.; i.e. P and S are not in X. This algebraic expression has
resemblance with the hiding operation in CSP. For example, in case

{ },X Q R= , one can write

() () { }, , , , , , \ ,P S P Q R S Q R→ ⇐ →

Here, Q and R are hidden and P and S are visible and of interest. This
hiding operation is useful for determining whether or not P→S can be
written as P;S. If no other processes can be found between P and S on the
longest path between P and S then this means that X is empty. In other
words, they are called neighbours. A neighbour sequential relationship is
written as (P,S,→)∅ and equals

() (), , ,{}, , \{} ;P S P S P S∅→ = → =

A chain of neighbour sequential relationships is written as

() () () ()(), , , , , , , , , , , , , ; ; ;P Q R S P Q Q R R S P Q R S∅ ∅ ∅ ∅→ = → → → → ⇔

This expression implies the longest paths between the processes P and S
from P to S. Generally, one can write

()0 1
0.. 1

,..., , ;n i
i n

P P P− ∅
= −

→ =

This form allows transformation to a sequential code-construct as
discussed in Section 4.6.2. The longest sequential paths of sequential
operators that are pointing in the same direction along the path are
eligible for implementation. The redundant relationships are useful for
consistency checks in designs. This is discussed on Section 3.8.

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

80

3.6.3 Parallel relationships

Equally-prioritized parallel relationships

An equally-prioritized parallel relationship (PAR) between processes P
and Q is denoted by the label ‘ ’. This parallel composition is written as
P Q. This process will behave as P and as Q in parallel. This process
terminates when all participating processes P and Q have terminated.

The parallel relationship between P and Q specifies that these processes
are competing at equal priorities. See Figure 3-21. This relationship is
written as (P,Q,).

Figure 3-21 Equally-prioritized parallel relationship.

A multiple composition (P,Q,R,S,) represents P Q R S. See Figure
3-22a. This diagram shows the relationships (P,Q,), (Q,R,), and (R,S,).

What are the relationships (P,R, PR
⊕), (P,S, PS

⊕), and (Q,S, QS
⊕)? See Figure

3-22b. The solution is ambiguous. For example, (P,R,→) or (P,R,←) are
valid specifications between P and R. This shows that the unspecified
relationships do not have to be ‘ ’. The choice of operator could be
performed by the design tool based on certain criteria. The choices are

, , { , , , , , , }
PR PS QS
⊕ ⊕ ⊕∈ → ← Δ Δ

Note that any choice must not cause compositional conflicts, otherwise
the operator is invalid. See Section 3.8.4.

In case the user wants to specify that all processes must be performed in
parallel, the diagram must be completed as in Figure 3-22c. The use of
hierarchical notations can prevent many lines and cycles. This is
discussed in Section 3.7.

P Q

3.6 Compositional relationships

81

Figure 3-22 (a) ambiguous PAR construct,
(b) unambiguous PAR construct,
(c) completely specified PAR construct.

Figure 3-22a is ambiguous without assumptions. Figure 3-22c is uniquely
specified and this diagram can be written as

()0 1 1
0.. 2

,..., ,n i n
i n

P P P P− −
= −

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

The design tool could apply a criterion (assumption) that specifies that
Figure 3-22a and 3-22c are equal. In this case, an equally-prioritized
parallel composition with n processes in the form of Figure 3-22a and
3-22c is written as

()0 1
0.. 1

,..., ,n i
i n

P P P−
= −

=

The processes P0…Pn-1 are randomly ordered since operator ‘ ’ is
symmetrical. Such criterion may simplify the understanding of parallel
patterns, such as in Figure 3-22a. Other criteria are possible that can

P Q R S

(a)

(c)

P Q R S

(b)

P Q R S

PS
⊕

PR
⊕

QS
⊕

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

82

optimize the performance of the process architecture for a particular
target platform. This is not further discussed in this thesis. The user can
overwrite any criterion by specifying interrelationships between
compositional undefined processes (section 3.7.3).

The previous parallel operator can be described by one of the three kinds
of parallel operators in CSP. The alphabets of processes are used to
specify the exact parallel process.

The three parallel operators are:

• Alphabetized parallel X YP Q
P is allowed to communicate in the set X and Q is allowed to
communicate in the set Y. They must agree on events in the
intersectionX Y∩ .

• Interleaving |||P Q
P and Q run completely independent of each other. They do not
synchronize with each other. In the graphical modelling
language this implies that there is no channel or barrier
interrelationship between them.

• Generalized parallel
Z

P Q

This is the process where all events in Z must be synchronized
and events outside Z can proceed independently. This operator
is a hybrid of an alphabetized parallel process and an
interleaving process.

Alphabets are subordinate to the design and alphabets can be
determined by the design tool once the design is completed. The design
tool can determine the exact parallel operator and the hiding of internal
communication events.

Unequally-prioritized parallel relationships

An unequally-prioritized parallel relationship (PRIPAR) between
processes P and Q is denoted by label ‘ ’. This parallel composition is
written as P Q. If process P is waiting to engage in a communication

3.6 Compositional relationships

83

event then it will behave as Q otherwise this parallel composition
behaves as P. In other words, process P is executed with higher priority
than process Q. This process terminates when all participating processes
terminate.

The unequally-prioritized parallel relationship between P and Q is
depicted in Figure 3-23. This relationship is written as (P,Q,).

Figure 3-23 Unequally-prioritized parallel relationship.

The multiple relationship (P,Q,R,S,) represents P Q R S, see Figure
3-24a. There is no ambiguity involved, since all directed operators point
in the same direction. This is similar as for the sequential operator.
Therefore, the unspecified relationships can be uniquely derived from
the specified relationships. See Figure 3-24b.

Figure 3-24 (a) PRIPAR construct,
(b) over-specified PRIPAR construct.

An unequally-prioritized parallel composition of n process is written as

()0 1

0.. 1

,..., ,n i

i n

P P P−

= −

=

P Q R S

(a)

(b)

P Q R S

 P Q

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

84

This form allows immediate transformation to unequally-prioritized
parallel code-constructs.

3.6.4 Alternative relationships

Equally-prioritized alternative relationships

An equally-prioritized alternative relationship (ALT) between processes
P and Q is denoted by label ‘ ’. See Figure 3-25. This operator is called
the external choice in CSP. This alternative composition is written as P Q.
This process will behave as P if P can engage in a communication event
or it behaves as Q if Q can engage in a communication event. If both
processes can engage in a communication event then the alternative
construct will choose one arbitrarily. The alternative process terminates
when the selected guarded process terminates.

In this thesis a fair choice, based on a fair priority policy, is preferred.
This is discussed in Chapters 4 and 5.

The equally-prioritized alternative relationship between P and Q. is
depicted in Figure 3-25. This notation is also written as relationship
(P,Q,).

Figure 3-25 Equally-prioritized Alternative relationship.

A guard expression to each process in the alternative relationship is
required that explicitly expresses a selection criterion that is taken. These
processes are called guarded processes. A guard expression is depicted as a
guard body and contains the format event [cond] action. This guard
body is depicted next to the guarded process with a thin line connecting

eventP [condP] actionP eventQ [condQ] actionQ

P Q

3.6 Compositional relationships

85

each other. This guard body is used to create an automaton, which was
discussed in Section 3.6.1. Figure 3-25 depicts the expression

()()() ()()()& ; ' & ; 'P P P Q Q Qcond action event P cond action event Q→ →

where ()'PP event P= → and ()'QQ event Q= → . P and Q are the guarded
processes that must engage respectively in eventP and eventQ. as their first
event. The action bodies actionP and actionQ must not engage in any event.

A guarded process has only one guard body attached to it. If the Boolean
expression cond is true and the guarded process can engage in event then
the choice operator may select the guarded process. If cond is false then
event will be omitted and the guarded process will not be selected. Once
the guarded process is selected then action will be executed prior to the
guarded process is executed.

A variety of guard expressions is shown in Table 3-1.

channel unconditional channel-input or channel-output
guarded process

channel [cond] conditional channel-input or channel-output
guarded process

callchannel.method unconditional channel-call or channel-accept
guarded process on specified method

callchannel.method [cond] conditional channel-call or channel-accept
guarded process on specified method

callchannel unconditional channel-accept guarded process
on any method

callchannel [cond] conditional channel-accept guarded process on
any method

skip unconditional skip guarded process

skip [cond] conditional skip guarded process

else unconditional else guarded process

else [cond] conditional else guarded process

timeout(t) unconditional timeout guarded process

timeout(t) [cond] conditional timeout guarded process

Table 3-1 Variety of guard expressions.

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

86

Here, event indicates a channel-input guard, channel-accept guard, channel-
output guard, channel-call guard, skip guard, an else guard, or a timeout
guard. After each guard expression an action body can be specified that
updates the state invariants.

The words channel and callchannel should be replaced by a channel
name. The word cond represents a Boolean expression (or condition) and
method should be replaced with the actual method name. The names skip,
else, and timeout are special keywords and t represents the specified
time. The channel-calls may require additional arguments in order to
express the variables that are involved in communication. A distinction
between channel-input and channel-output or between channel-accept
and channel-call is rendered by respectively the arrow entering or
leaving the guarded process. Optionally, symbol ‘?’ or ‘!’ can be
appended to the event name in order to render the direction in the guard
expression; channel-input and channel-accept use symbol ‘?’, and
channel-output and channel-call use symbol ‘!‘.

A skip guard does not require a channel-input or channel-output and the
guard is ready all the time. An else guard cannot be found in CSP but it is
like a skip guard with the difference that it will be selected if no other
guard is ready. The else guard can be modelled as a skip guard in an
unequally-prioritized alternative construction. See Figure 3-26. The
unequally-prioritized alternative operator is discussed in the next sub-
section.

Figure 3-26 Else guarded construct.

The guard is said to be unconditional when cond is always true (or not
specified) and the guard is said to be conditional when cond is some
Boolean expression.

⇔ P Q P Q

eventP [condP]
actionP

eventP [condP]
actionP

else [condQ]
actionQ

skip [condQ]
actionQ

3.6 Compositional relationships

87

A timeout-guard becomes ready when the specified time expires. The
timeout is relative to the beginning of the execution of the alternative
relationship.

Guards can be applied to any-to-any channels but not to barrier
configurations. It is important to notice that a channel-input guard and a
channel-output guard, using the same channel and specified (at different
processes) in the same alternative relationship will never commit in
communication (Jones, 1987). All guards sharing the same alternative
relationship must be disjoint in such a way that no pair of channel-input
guards and channel-output guards can become simultaneously ready.
This guideline prevents unwanted race conditions.

The composition (P,Q,R,S,) represents a path of relationships. See
Figure 3-27a. Since each process specifies a separate guard, the criterion
here is that the unspecified relationships may also be a choice operator.
See Figure 3-27b, whereby

, , { , , , , , , , , , }
PR PS QS
⊕ ⊕ ⊕∈ → ← Δ Δ

The criterion that specifies that Figure 3-27a implies Figure 3-27c will
simplify the understanding of Figure 3-27a. In this case, (P,Q,R,S,) is
written as P Q R S or one can write

()0 1
0.. 1

,..., ,n i
i n

P P P−
= −

=

Operator is symmetrical and thus the processes P0…Pn-1 are randomly
ordered.

In case the guards specify a conditional expression cond, one can write

() ()0 1
0.. 1

,..., , &n i i
i n

P P cond P−
= −

=

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

88

Process Pi will be omitted when its conditional expression condi is false.

Figure 3-27 (a) ambiguous ALT construct,
(b) unambiguous ALT construct,
(c) completely specified ALT construct.

Unequally-prioritized alternative relationships

An unequally-prioritized alternative relationship (PRIALT) between
processes P and Q is denoted by the label ‘ ’. This prioritized alternative
composition is written as P Q. This process is almost similar to the
alternative relationship, except that when both processes can engage in a
communication event, process P will be chosen in preference of Q.

The unequally-prioritized alternative relationship between P and Q is
depicted in Figure 3-28. This notation is written as relationship (P,Q,).

P Q R S

(a)

(c)

P Q R S

(b)

P Q R S

PS
⊕

PR
⊕

QS
⊕

3.6 Compositional relationships

89

Figure 3-28 Unequally-prioritized alternative relationship.

A multiple relationship (P,Q,R,S,) represents P Q R S. See Figure
3-29a. Since ‘ ’ is a directed operator and pointing in the same direction
along the path, this means that Figure 3-29a implies 3-29b.

Figure 3-29 (a) PRIALT construct,
(b) over-specified PRIALT construct.

In case of a multiple relationship we can write

() () () ()(), , , , , , , , , , , , ,P Q R S P Q Q R R S P Q R S= ⇔

In the graph this expression is the longest path P to S. The importance of
this form is that we can index processes in the compositional construct so
that processes are successively ordered and with declining guard
priorities.

One can write

() ()0 1
0.. 1

,..., , &n i i
i n

P P cond P−
= −

=

P Q R S

(a)

(b)

P Q R S

P Q

eventP [condP] actionP eventQ [condQ] actionQ

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

90

This form allows immediate transformation to unequally-prioritized
alternative code-constructs.

3.6.5 Exception relationships

An exception relationship (EXC) between processes P and Q is denoted
by the label ’Δ ’. This exception composition is written as P Δ Q. This
process behaves as Q when P unsuccessfully terminates; otherwise it
behaves as P. If P successfully terminates then Q will be omitted. This
process is depicted in Figure 3-30.

Figure 3-30 Exception relationship.

This exception operator is not formally defined in CSP. The exception
operator is a new operator that is defined in Appendix C. It originates
from the interrupt operator P Δi Q in CSP. This process behaves like P
until Q can engage in event i at which point it behaves as Q. Q is initially
awaiting for some event i from its environment. If P successfully
terminates then Q will be ignored. The exception operator is a simplified
version of the interrupt operator whereby event i is represented as an
internal event. This internal event is generated by channels, barriers, or
instructions that are in exception; e.g. error in hardware, disconnected
link, or division by zero. Process Q is the exception handling process,
called the exception handler.

Here, P Δ Q and P Δi Q are both directed interrupt relations between P
and Q, but only P Δ Q is directional commutative. The directional
commutative property provides topographical modelling freedom.
Consider the differences:

Δ ≠ Δi iP Q Q P

Δ = ΔP Q Q P

P Q
Δ

3.6 Compositional relationships

91

The Δi operator requires preemption on event i which needs a
sophisticated construct like the prioritized parallel construct. On
exception, the Δi operator requires that process P releases all the
channels and barriers, on which it or its child processes are blocked, in
order to prevent deadlocks. Instead, the Δ operator can be implemented
with try-and-catch clauses as found in Java and C++. The Δ operator can
be implemented with a setjump/longjump construct in C and assembler.
The compositional relationships must collect and pass exception objects
further on. Furthermore, the inclusion of exception operator does not
change the semantics of the other CSP operators.

The P Δ Q construct passes objects on exception to the exception handling
processes. The objects embrace the exception type. If an exception is
‘thrown’ in P then this indicates an exceptional state in P. P returns
immediately with the exception object indicating the type of the
exception that was raised. A process may also return a collection of
exception objects that were raised in its child processes. The exception
collection being not empty indicates that the process has terminated
unsuccessfully. An empty exception collection indicates successful
termination. This distinction between successful and unsuccessful
termination does not affect the semantics of the original CSP operators.
Computations or primitive communication processes (see Section 3.6.8)
convey points in the model where exceptions can rise. Thus, channels,
barriers, and instructions are entry points for exceptions. Channels and
barriers that are in exception, release their synchronization and throw
exceptions at both sides of the communication. Therefore, erroneous
channels or barriers cannot lock processes forever.

In design, exception handling can be composed with multiple
(redundant) exception relationships. See Figure 3-31.

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

92

Figure 3-31 (a) EXC construct,
(b) over-specified EXC construct.

Multiple exception relationships are possible in a relaxed form where no
set of exceptions are yet specified. If an exception is thrown in P then this
exception may be caught by Q, R, or S. The exception handlers specify
which exceptions that they can handle. Those exceptions that are not
handled by an exception handler are delegated to the next exception
handler until the exception is handled. This is detailed in Section 4.6.4.

3.6.6 Anonymous repetitions

As with many programming languages, this graphical language supports
imperative repetition. Repetition in CSP is in a declarative style, called
recursion. Recursion is a process with a function P=F(P), which involves P
like in P=N;P. Function F is any CSP term. This kind of recursion is
‘named’ and involves recursive hierarchies. This complicates imperative
extensions. The recursion is also defined as a ‘nameless’ fixed-point
recursion . ()X F Xμ (μ is a Greek letter ‘mu’), which does not involve
recursive hierarchies. This recursive process is a repetition involving X, as
in

(). ; ; ; ; ;...X P X P P P Pμ =

P Q R S

(a)

(b)

P Q R S

Δ Δ Δ

Δ

Δ Δ Δ

Δ

3.6 Compositional relationships

93

This represents a process with a fixed point at which the traces of events
maps to itself. For example, P a SKIP= → identifies the function Xμ with
the sets of traces

{ }na n∈

Another type of repetition that is mentioned by Roscoe (1998) is P*,
which performs P in an infinite sequence. This repetition is not very
useful in practice, since no escape is possible. With Xμ one can escape
from the repetition with the help of if-then-else; e.g.

(). ;X P X cond SKIPμ repeats P and terminates when cond becomes
false. This allows for an imperative approach by which the if-then-else
clause is part of an automaton. In an imperative language, this kind of
repetition is called a loop. Therefore, the graphical modelling language
incorporates Xμ , which is called a loop process. In Hilderink (2002), the
loop process was labelled ‘μ‘. This symbol is often used in mathematics
for all kind of things, such as micro = 610− . We choose a different symbol
‘ ’ (pronounced as ‘loop’), which is more convenient to represent a loop.

A loop process that repeats process P until expression cond is false, is
illustrated in Figure 3-32.

Figure 3-32 Infinite recursion.

The loop process is a special primitive process that embraces only one
compositional relationship with one associated process. The loop process
will always repeatedly execute the associated process until its conditional
expression becomes false. The conditional expression is depicted as a
guard label, which is evaluated in the order that is specified by the
compositional relationship. The loop process terminates when the
associated process terminates and the conditional expression is false.

P

[cond]

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

94

Common kinds of loop constructs can be specified, as illustrated in
Figure 3-33. These loop constructs can be realized in many programming
languages. In the examples, the action bodies attached to the processes
specify an automaton involving the loop process. The last example shows
a repetition construct.

DO-WHILE construct:

 int i = 0;

 do { i++; P; } while (i<10);

FOR construct:

 for (int i=0; i<10; i++) { P; }

or

 int i=0;

 while (i<10) { i++; P; }

Repetition construct:

 P(0) P(1) P(2)

Figure 3-33 Examples of different kind of loop constructs.

Variable labels are depicted as floating port labels that are not part of the
process interface. Figure 3-34a shows a loop process with variable labels
x and y.

Since these variables are declared within the scope of the parent process,
the loop process can use these variables in its guard body. Guard bodies
may not always clearly show the data dependencies in the process
architecture. It is possible to show the data dependencies between the
loop process and the variable labels by using open arrows. Figure 3-34b

[i<3] i++ i=0:int

P

[i<10] i++

i=0:int

P

[i<10]

i=0:int

i++

P

3.6 Compositional relationships

95

illustrates this. Only primitive data types are accepted by the guards of
loop processes.

Figure 3-34 Two equal loop processes:
(a) without showing data dependencies,
(b) showing data dependencies.

3.6.7 Aliases

An alias is another name for the same thing. Multiple floating labels with
different names can be part of the same relationship. These are aliases
which names are dedicated to their specification context. This can
improve the readability of the CSP diagram. An alias can be depicted in
CSP diagrams using a line between two floating labels of the same type.
See the examples in Figure 3-35.

Figure 3-35 Examples of aliasing:
(a) channel communication
(b) barrier communication
(c) state communication.

bar1
:Barrier

bar2
:Barrier

P

Q

x:int y:int

P

Q

memo
:Document

letter
:Document

P

Q

[x>10] y++

x:int y:int

[x>10] y++

x:int y:int

(a) (b)

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

96

In Figure 3-35a, messages are passed via the channel memo and letter. In
Figure 3-35b a barrier communication is extended via bar1 and bar2. In
Figure 3-35c, the variable x is the same as y. When x is updated then y is
updated as well, visa versa. In this example, a value from P is passed to
Q via x and y after P has terminated and before Q is executed.

In a flat hierarchy, the alias labels must be ports in the process they are
declared. Arrows are used in a deep hierarchy design. Flat and deep
hierarchies are discussed in Section 3.7. The line can also have an
identifier label on top of the line, which is another alias.

3.6.8 Primitive communication processes

This section introduces three special processes that express
synchronization points in the CSP diagram. These special processes are
called primitive communication processes.

Data channel, input and output

The primitive communication processes for data channel communication
are depicted in Figure 3-36. Figure 3-36a shows channel input. The
process reads from channel c and outputs the data to variable x. Figure
3-36b shows channel output. The process writes the content of y to
channel c.

Figure 3-36 Primitive communication processes on data channels:
(a) data channel input, i.e. channel to variable,
(b) data channel output, i.e. variable to channel.

!

(b)

c:int y:int

channel variable

?

(a)

x:int c:int

variable channel

3.6 Compositional relationships

97

Call channel, call and accept

The primitive communication processes for call channel communication
are depicted in Figure 3-37. The method that is involved is a choice or
element of the service type. The method is specified in a guard body.
Figure 3-37a shows the acceptance of any method on channel c that
Figure 3-37b illustrates the acceptance of a particular method, namely
method on(). The method on() is an element of OnOff. Figure 3-37c
depicts a request of the method on() on channel c.

Figure 3-37 Primitive communication processes on call channels:
(a) server side accepts any method,
(b) server side accepts only method on(),
(c) client requests method on() on call channel.

The keywords call and accept in the action bodies, as illustrated in
Figure 3-37, specify the behaviour of the primitive communication
processes. The keyword accept without a specified method implies that
any request will be accepted.

Barrier, sync

The primitive communication process for barrier communication is
depicted in Figure 3-38. This example synchronizes on barrier b.

Figure 3-38 Primitive communication processes on call channels.

* b:Barrier

?

(a)

c:OnOff !

(c)

c:OnOff

call on()

?

(b)

c:OnOff

accept on

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

98

Examples

Examples of communication are given in Figure 3-39. Figure 3-39a shows
communication via a data channel. Figure 3-39b illustrates a request for
method func() via a call channel. One can specify arguments and a return
value as shown in the example. Figure 3-39c shows barrier
communication on which the variables x, y, and z depend.

Multipurpose primitives

These primitive communication processes are useful for

• showing the points of interaction between processes,

• transformation between channels and local variables,

• showing hardware access points (Hilderink et al., 1998),

• checking for deadlocks in design,

• checking for priority inversion problems in design,

• throwing exceptions on internal errors.

Sharing objects

Objects can be passed via a channel or barrier by the methods pass-by-
value or pass-by-reference. These mechanisms are discussed in Appendix
H. Pass-by-reference may improve performance on large objects on
shared memory systems. This requires secure handling to avoid that no
more than one process can access the shared object at the same time.
Primitive data types do not suffer from this problem since pass-by-value
is used, which is instinctively secure. Sharing objects is more restricted
than sharing primitive data types. The rules in Section 3.8.1 also apply
for objects.

3.6 Compositional relationships

99

Figure 3-39 Examples of communication relationships between
channels, barriers, state variables, and input and
output processes:
(a) data channel communication: len = size,
(b) call channel communication: z = func(x,y),
(c) barrier communication: z=x, y=w.

Figure 3-40 Output process and state handling:
(a) pass reference of obj via channel c; obj must not be
used after output,
(b) pass reference of obj via channel c and return a
clone of obj; obj can be safely used after output.

!

(a)

c:Object obj:Object

channel object

!

(b)

c:Object obj:Object

channel object

! ?
length:int

size:int len:int

! ?
chan:MyService x:int

z:boolean

y:int

accept call

write read

(a)

(b)

call z=func(x,y) accept func

k:int

* *

sync sync

(c)

boolean func(int x, int y)

{

 ...

 k = x;

 ...

 return k;

}

x:float

y:int

z:float

w:int

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

100

Figure 3-40a shows an output process that sends an object obj via a
channel c. The reference of the object or its content is passed on. One
cannot tell in advance which mechanism will be used at this side of the
channel. Therefore, obj must not be used after the output, since its
ownership may be released and claimed by another parallel processes.

Figure 3-40b shows an output process with a two-way open arrow. This
implies that obj will be valid after output. In case pass-by-value is used,
the original object is returned. In case pass-by-reference is used, a clone
of the original object is returned. This allows other sequential processes
to safely share obj.

Reading obj in parallel is not allowed, as illustrated in Figure 3-41a, since
no guarantee can be given that pass-by-value is used. The ownership of
the object can be passed on. A null-pointer may be the result, which will
cause a null-pointer exception on use after the reference of the object was
send. In Figure 3-41b the problem is solved by a two-way arrow between
the first output processes and obj. The second output may safely use obj.
After the second output, obj may not be used anymore, unless a two-way
open arrow is used.

Figure 3-41 Example of parallel output using the same object:
(a) illegal since second output may suffer from a
nullpointer exception,
(b) illegal since second output uses a reused or cloned
object

Channel communication contributes to a secure memory management
concerning objects. Open arrows can be used such that the choice

!

(a) unsafe

c:Object

obj:Object

channel object

! d:Object

!

(b) safe

c:Object

obj:Object

channel object

! d:Object

3.6 Compositional relationships

101

between pass-by-value and pass-by-reference is made. This is useful for
optimizing the communication within the process architecture.

Figure 3-42 Four different open arrow configurations between objects and
input or output processes;
(a) pass-by-reference is enforced,
(b) pass-by-reference is enforced and a clone is returned at the
writer side,
(c) pass-by-value is preferred; in case the object cannot be copied
then pass-by-reference is used,
(d) pass-by-value is preferred; in case the object cannot be copied
then a clone is returned at the writer side.

Figure 3-42 shows four configurations and each configuration has its
properties. Figure 3-42a passes the references from producer to
consumer. Figure 3-42b is similar, but it returns a clone of obj1 so that the
next process can use obj1 without explicitly creating a new object. Figure
3-42c illustrates a configuration that can pass the content of obj1 to obj2,
since obj2 can be reused. In case no pass-by-value can be used, pass-by-
reference is used instead. Since the choice is uncertain, the producer may
not use obj1 after output. Figure 3-42d depicts a configuration by which
pass-by-value is preferred. Object obj1 may be used after the output. In

! obj1:Object ? obj2:Object
chan:Object

! obj1:Object ? obj2:Object
chan:Object

! obj1:Object ? obj2:Object
chan:Object

! obj1:Object ? obj2:Object
chan:Object

(a)

(b)

(c)

(d)

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

102

case a reference is send then a clone is returned to the producer. This is
similar with call channels and barriers.

3.7 Hierarchies

3.7.1 Ambiguity and Unambiguity

A CSP diagram is ambiguous when it describes more than one algebraic
expression. The ambiguity is caused by unspecified compositional
relationships for which the operator can be a choice of one out of more
possibilities.

Consider a model with three processes P, Q and R as shown in Figure
3-43. In this example, the user specifies that process P should be executed
before Q and Q should be executed in parallel with R. The behaviour
between P and R is not specified by the user and leaves open certain
ambiguity. This means that there is more than one valid solution and any
of these solutions is accepted.

Figure 3-43 Example of a model with ambiguity.

Here, the valid solutions are P;(Q R) and (P;Q) R. Every solution should
satisfy the requirements. If a solution exists that does not satisfy the
requirements then further refinement steps are necessary in order to
exclude the invalid solution from the set of solutions.

Ambiguity can be avoided by a complete graph or by using hierarchies
of processes. A complete graph is a diagram for which all
interrelationships between all processes are user-specified or uniquely
derivable. A complete graph can be transformed into a hierarchical
diagram and visa versa. A hierarchical diagram simplifies a complete
graph.

P Q R

3.7 Hierarchies

103

The graphical modelling language supports hierarchies in three different
ways:

• Deep hierarchical modelling abstracts away detail by describing
different levels of processes. This approach simplifies a design
by hiding detail, which is based in depth browsing.

• Flat hierarchical modelling shows the insight of processes in one
model in order to understanding the behaviour of a protocol of
interaction. This is based on using parenthesis, which is based
on flat browsing.

• Mixture of deep and flat hierarchical modelling shows the best of
both.

In any of these hierarchical modelling approaches one can model a
complete graph at a particular level in the hierarchy. Complete graph
modelling does not directly specify hierarchies, but it gives rise to
anonymous compositional hierarchies during implementation.

Solutions can be depicted by nested hierarchical processes as illustrated
in Figure 3-44a and 3-44b. This deep hierarchy is depicted here in
transparent rectangles in order to illustrate the hierarchy and the
relationships between the processes in one diagram. In general,
transparent rectangles are notation unfriendly. They can easily occupy an
unnecessary amount of space in a diagram. Instead a flat hierarchy
should be designed using parenthesizing symbols, which is shown later
in this section.

Figure 3-44 Unambiguous solution using deep hierarchies:
(a) ();P Q R
(b) ();P Q R

 P

Q R

P Q
R

(a) solution 1 (b) solution 2

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

104

A unique and unambiguous solution can be achieved by specifying a
relationship between P and R, as shown in Figure 3-45. This is a complete
graph. Each step towards a complete graph eliminates ambiguous
interpretations.

Figure 3-45 Unambiguous solutions by complete graph modelling:
(a) ();P Q R
(b) ();P Q R

This way, unambiguous compositions require many relationships to
specify a unique solution. All these lines would make the model complex
and likely unreadable. In order to keep the model simple, we introduce
the parenthesis symbol on compositional relationships. See Figure 3-46.
This is represented by an open dot ‘ ’ (concatenation of ‘(‘ and ‘)’) at the
peer-end of the compositional relationship. In these examples, Figure
3-44a is equal to 3-45a and 3-46a. Figure 3-44b is equal to 3-45b and
3-46b. Using parenthesis symbols minimizes the number of relationships.
The parenthesis symbol can represent an anonymous process whereby its
identifier is unspecified by the user. An unspecified identifier is hidden
by default.

Figure 3-46 Unambiguous solutions using parenthesizing
relationships:
(a) ();P Q R
(b) ();P Q R

(b) solution 2 (a) solution 1

P Q R P Q R

(b) solution 2 (a) solution 1

P Q R P Q R

3.7 Hierarchies

105

A compositional relationship with an open dot at one end or both ends
becomes a directed relationship. This is a parenthesizing relationship. A
process to which the open dot is connected belongs to a parenthesized
relationship.

3.7.2 Indexed parenthesizing relationships

A dot in the parenthesizing relationships can be indexed with a value
greater than zero, i.e. \{0}i +∈ (only positive natural numbers without
0). The index is an instrument useful for determining the levels in
hierarchy. Its value can be altered by an algorithm that allows for
reallocating relationships in a CSP diagram while maintaining its
hierarchy and its algebraic expression. This is discussed in Section 3.8.2.

For example, see Figure 3-46. Indexes greater than 1 should be rendered
next to the dot to indicate the index. A dot with no index implicitly
means that it has index 1. A zero-order relationship has index 0, which
implies no parenthesis symbol. A parenthesizing relationship with index
1 is said to be a first-order relationship, index 2 is a second-order
relationship, etc.

Figure 3-47 Indexed parenthesizing relationship with index i.

Figure 3-47 illustrates indexed parenthesizing relationships for
describing more complex compositions or algebraic expressions using a
minimal number ()1n − of interrelationships, with n processes. A model
is usually analyzed or read starting at the first-order relationships
towards second-order relationships. A systematic method is discussed in
Section 3.7.4 that allows the user to brows (or read) the hierarchy by
stepping from zero-order relationships to higher-order relationships.

2
P Q R T

1

()(); ;P T Q R

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

106

3.7.3 Compositional undefined relationships

In reality and virtually, all processes are compositionally related to each
other. The compositional interrelationships that are specified by the user
are visual in the CSP diagram. The user-unspecified interrelationships
are hidden and they are internally determined by the tool. A CSP
diagram that is conflict-free results always in a computational model. A
process that is not connected by user-specified interrelationships is called
compositional undefined. A compositional undefined process has no
neighbours in the visual view. Compositional undefined processes can be
executed in any order, i.e. in parallel or in some sequence. The behaviour
also depends on communication, as specified by the communication
diagram. This is in compliance with the computational models of block
diagrams. Block diagrams are like CSP diagrams without user-specified
compositional relationships.

By not specifying connections, we mean that we do not care what the
execution order is and therefore we let the design tool decide. The
criterion that is applied here is an internal choice between (equally- or
unequally-prioritized) parallel and sequential operators. The choice
could be influenced by the communication relationships between the
compositional undefined processes. The choice of the hidden operator
must be valid, i.e. each solution must be compositional conflict-free
(Section 3.8.4). Hidden interrelationships can be visualized (e.g. using
transparent lines) to show to the user which operator has been chosen by
the tool. Hidden interrelationships can also be parenthesizing in order to
simplify the view. See Figure 3-48 where operator { , , , , }⊕∈ → ← .

Figure 3-48 Undefined relationship between two processes:
(a) compositional undefined processes,
(b) choice of operator and interrelationship visualized.

(a) (b)

⇒
i j

P Q P Q
⊕

3.7 Hierarchies

107

The graphical modelling language allows us to express the detail of the
execution framework. The ability of visualizing the hidden relationships
is an ultimate solution for debugging and studying the behaviour of the
model at design level.

Compositional undefined processes can be connected by a zero-order
interrelationship without an operator in order to group these processes.
See Figure 3-49. This is useful when the group is being parenthesized.
Again, the operator of an undefined interrelationship can be determined
by the design tool.

Figure 3-49 A grouped undefined relationship.

3.7.4 Deep hierarchies versus flat hierarchies

A process can contain other processes. Therefore, a CSP diagram can
contain hierarchies of sub-diagrams. A sub-diagram is a process that is
again described by a communication diagram and a composition
diagram. The scope of a sub-diagram is determined by its parent process.
In CSP diagrams, nested hierarchies are created by deep hierarchical
modelling (encapsulation and hiding), by flat hierarchical (encapsulation
but not hiding) modelling, or a mixture of the both. See Section 3.7.1.

Although deep hierarchical modelling simplifies a design by hiding
detail, it may make the understanding of behaviour complicated when it
involves processes at deeper levels in the hierarchy. Flat hierarchical
modelling solves this problem, but a flat hierarchy may complicate the
design by offering too much detail. However, in a flat hierarchy any
process and relationship that is irrelevant for describing a protocol of
communication can be hidden from the view. This is called compression.
Compression is useful for describing the behaviour of processes as
observed via their process interfaces.

P Q

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

108

The user can apply a suitable mix of deep and flat hierarchical modelling.
A straightforward transformation between deep and flat hierarchies
exists that can assist the user in determining an appropriate view for
analyzing a particular specification or behaviour.

Techniques are available that allow the user or the tool to transform a
deep hierarchy into a flat hierarchy and visa versa. These techniques can
also be applied to mixed (deep/flat) hierarchies. Any transformation
results in the same computational expression with differences in
transparency. The transformation from a deep hierarchy to a flat
hierarchy starts with selecting one sub-process in the sub-diagram that
has only outgoing parenthesizing and/or zero-order relationships. If
such a sub-process is found then the process is connected with a
parenthesizing relationship with index 1 to that sub-process. For example
in Figure 3-50a, such a sub-process is R in parent process Q. The parent
process can be transformed from a rectangle to a parenthesizing symbol
of the newly created relationship. This is illustrated in Figure 3-50b. The
parenthesizing symbol inherits the parent process identifier. Eventually,
the reallocation rules can be used to reallocate the relationship to other
sub-processes in Q. See the reallocation rules Section 3.8.2. Illegal
indexes, i.e. index < 1, occur when a wrong starting process was selected
that has an incoming parenthesizing relationship. If reallocation rules are
applied correctly then the indexes do not change the computational
expression. This procedure can be repeated until the deep hierarchy has
been transformed to a flat hierarchy.

Figure 3-50 Example of flattening hierarchy:
(a) P related to Q (Q is transparent),
(b) P related to the processes in Q.

(a) (b)

3 3

2
Q

2
S

P R

T

U

Q
2

S

P R

T

U

3.7 Hierarchies

109

The reverse procedure is also interesting. The reverse procedure can be
used to determine design conflicts in more complex designs. A group of
processes connected with zero-order relationships forms a hierarchy by
default. For example, the processes S and T in Figure 3-51a are merged
into a new process which is identified as ST. See Figure 3-51b. The
relationships are reconnected to the anonymous process and the index
between R and ST must be decremented by 1. This procedure can be
continued until a single process and only zero-order relationships
remain. See Figure 3-51c.

Figure 3-51 Example: creating deep hierarchies:
(a) P is related to all processes in a flat hierarchy,
(b) merging first-order relationships first,
(c) complete deep hierarchy.

PRSTU

RSTU

STU

ST

ST

II III

(b)

(c)

IV

S

P R

T

U

S

P R

T

U
I

2

3 3

2

2
S

P R

T

U

(a)

2

2

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

110

The relationships (R,ST, ⊕) and (R,U, ⊕) in Figure 3-51b can be merged
only if both relationships have the same operator, i.e. one relationship is
redundant. If these relationships have different operators then these
operators are in conflict and the model has an error. This procedure
allows checking the model for compositional conflicts. We assume that
these operators are the same. The relationship between P and ST can be
removed due to redundancy. This procedure ends until a single process
is the result and all parenthesized symbols have been eliminated. See
Figure 3-51c.

Identifier prefixing

Relationships and identities in a CSP diagram must not disappear on
translating a deep hierarchy into a flat hierarchy. Also the translation of a
flat hierarchy into a deep hierarchy must not create new information.

The names of ports are unique in the process they are defined. However,
these names can be the same between processes. This is not a problem in
a deep hierarchy, but it may conflict on a flat hierarchy. The solution is to
distinguish the names in a flat hierarchy.

An identifier label can be prefixed with the process name to which it
belongs. Therefore, an identifier label can have the following format:

process.id:Type

Here, process is optionally used to distinguish ids with the same name
from different processes. In a flat hierarchy, process can contain other
prefixes separated by ‘.’. In case the entire name becomes too large due to
many prefixes, a word wrap can be used after ‘.’ and the name is
depicted by multiple lines.

In the following example are the operators on the compositional
relationships omitted.

Figure 3-52 shows a transparent CSP diagram using a deep hierarchy of
processes. The independent variables i are used in the processes p:P, q:Q,

3.7 Hierarchies

111

r:R, and s:S. Some action bodies increment or decrement i for some
reason. The meaning of i is not important in this example.

Figure 3-52 Deep hierarchy with equal variable names.

Applying these translation steps to Figure 3-52 results in Figure 3-53.
This example demonstrates the result of prefixing floating variable labels
in order to maintain their locality.

Figure 3-53 Flat hierarchy with prefixed variable names.

Variable i in process q is named q.i and i in r is named r.i. Since i in
process p is also nested in q, a double prefixing must be used, namely
q.p.i. This is similar for i in s, namely r.s.i. The variables in the action
bodies cannot use prefixes. They do not need prefixes because they are
attached to a process which is parenthesized. Therefore, action body of
a:A cannot use a variable in a different process; e.g. it refers to q.p.i but it
cannot refer to r.s.i.

Translating a deep hierarchy into a flat hierarch also affects the
communication diagram. Channels and barriers that are passed via ports
are aliased with prefixed identifiers. Figure 3-54 shows a merged

a:A

q.p.i:int

q.p.i++

… b:B

q.i--

q.i:int

d:D

r.s.i:int

r.s.i--

… c:C

r.i++

r.i:int

p:P q:Q r:R s:S

q:Q

p:P

a:A

i:int
i++

…

b:B

i--

i:int

r:R

s:S

d:D

i:int
i--

…

c:C

i++

i:int

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

112

communication and compositional diagram based on a deep hierarchy as
in Figure 3-52 (above).

Figure 3-54 Deep hierarchy with equal port names.

After translation, the result can be depicted in two different ways. Figure
3-55a shows the result based on aliases that extend the channel. Figure
3-55b shows the result based on aliases that are separated from the
channel and these aliases are depicted next to the design. This makes the
diagram better readable in case the ports are not of immediate concern.
Hiding the ports in Figure 3-55a results in Figure 3-55b.

Figure 3-55 Flat hierarchy with prefixed variable names.

a:A

q.y:int

… b:B

q.p.i:int

d:D

r.s.i:int

… c:C

r.y:int

p:P q:Q r:R s:S

y:int y:int

chan:int

a:A

q.y:int

… b:B

q.p.y:int

d:D

r.s.y:int

… c:C

r.y:int

p:P q:Q r:R s:S

y:int y:int
chan:int

q.y:int chan:int r.y:int chan:int

(a) aliases extend the channel

(b) aliases are separated

q.p.y:int q.p.a.y:int

r.s.y:int r.s.d.y:int

r:R q:Q

p:P

a:A …

b:B

s:S

d:D …

c:C

y:int

y:int y:int
y:int y:int y:int

y:int

y:int
y:int y:int

chan:int

3.8 Analysis techniques and rules

113

3.8 Analysis techniques and rules
The graphical modelling language includes rules to avoid illegal designs.
In this section, analysis techniques are described that apply these rules to
determine the validity of the process architecture. These analysis
techniques can be applied by the user or it can be automated by a design
tool.

3.8.1 State communication rules

Simultaneous updating of the same state variable is forbidden. State
communication must not cause race conditions between reading and
writing. State variables are allowed to be read in parallel. Figure 3-56
shows a mixed CSP diagram in which these safety rules are depicted.
Here, the state variable x is shared by P, Q, R, and S. The safety rules for
x are expressed by the choice of operators in this general pattern of
compositional relationships. This pattern scales for more or less
processes.

Figure 3-56 Rules of using variables safely.

Let OP be a set of all operators

{ , , , , , , , , , }OP = → ← Δ Δ

The operators on the compositional interrelationships are restricted to

{ , , }
PQ

OP⊕ ∈ − ,
RS

OP⊕∈ , { , , }
PQRS

OP⊕ ∈ −

P R

Q S

PQ
⊕

RS
⊕

PQRS
⊕

x:int

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

114

Thus, the interrelationships PQ
⊕ and PQRS

⊕ are not allowed to be performed
in parallel.

The rules that apply to two-way open arrows are given in Figure 3-57.

Figure 3-57 Rules of sharing an object with two-way open arrows.

The operators on the compositional interrelationships are restricted to

{ , , }
PQ

OP⊕ ∈ − , { , , }
RS

OP⊕∈ − , { , , }
PQRS

OP⊕ ∈ −

The user or design tool must apply these rules to check whether or not
they are violated. Violation results in an error. It is obvious that parallel
writing, or parallel writing and reading may cause a race hazard that
corrupts the data.

3.8.2 Reallocation rules

In process architectures, as in CSP diagrams, processes are usually
located near to the processes with the highest relationship density. This
should give the user the freedom to move processes around while the
model grows. The connections between processes are usually kept short
and crossings should be avoided as much as possible. However,
reallocating processes can result in longer connections and possibly
create crossings with other connections. In case a process is related to a
group of processes, a technique is presented that allows the process to be
related to the nearest process in the group, while preserving the algebraic
expression. This technique can significantly shorten the connection or
eliminate crossings, which make the model better readable.

P R

Q S

PQ
⊕

RS
⊕

PQRS
⊕

x:int

3.8 Analysis techniques and rules

115

Example

Figure 3-58a shows a process P that is originally related to process Q, but
it has been moved to another location in the diagram closer to other
processes it is related to. These other processes are not shown in this
figure. The technique presented here shows that the relationship between
P and Q can be reallocated to a relationship between P and T as
illustrated in Figure 3-58b.

Figure 3-58 Example of dragging a process in a CSP diagram and
reallocating its connection:
(a) moving process P from left to right,
(b) reallocation its connection by following rules.

Reallocation rules

Each reallocation step along a compositional relationship represents an
index increment, an index decrement, an index increment and
decrement, or index equality. Figure 3-59a-f show six basic rules for
reallocating relationships.

(a) moving process P in CSP diagram

(b) reallocation of connection

dragging

+1 +0 -1

P P

Q R S T U

Q R S T U

P

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

116

Figure 3-59 Reallocation rules.

The operators above the interrelationships have been omitted because
they do not really matter for this technique. The operators are assumed to
be specification conflict-free and they are assumed to satisfy the
requirements.

In Figure 3-59 the rules c and f illustrate the boundaries of reallocation.
Once a relationship is given a parenthesis symbol then its index is 1 or
higher. Illegal indexing (index < 1) indicates an illegal reallocation in that
direction and indicates a dead end. In Figure 3-59c and 3-59f, one can see
that process R is not a member of the group and therefore reallocation
should not be applied.

For example, the rules are applied to Figure 3-58a. Each step is illustrated
in Figure 3-60a-d. The rules cannot be applied when the index becomes
illegal, as illustrated in Figure 3-60e.

These reallocation rules provide a systematic method which can be
automated by the design tool when the user drags a process in the
diagram for which the tool automatically determines the shortest
connections.

1 2

+1
(a) increment (b) decrement (c) decrement and

index < 1 (illegal)

(d) equality (f) decrement and
index < 1 (illegal)

(e) increment and
decrement

2 1

-1

1 0

-1

1 1

+0

2 2

-1 +1

1 1

P

Q R

P

Q R

P

Q R

P

Q R

P

Q R

P

Q R

-1 +1

3.8 Analysis techniques and rules

117

Figure 3-60 Example of reallocating a connection by incremental step.

Algebraic expression

Figure 3-60a-d are represented by one algebraic expression for which any
operator can be applied on the interrelationships. Let ⊕

PQ be an operator
between P and Q with ⊕

PQ { , , , , , , , , , }∈ → ← Δ Δ . One can derive the
following algebraic expression using the compositional analysis rule as
defined in appendix G.

RS

QX XT

PY YU

X R S

Y Q X T

Z P Y U

= ⊕
= ⊕ ⊕

= ⊕ ⊕

illegal

(a) original model while dragging P

(b) reallocation step 1

(c) reallocation step 2

(d) reallocation step 3 is final

(e) reallocation step 4 is illegal

dragging

1 2

+1

1 2

+1 +0

1
1

+1 +0 -1

0?

+1 +0 -1 -1

P P

Q R S T U

Q R S T U

R S T U

Q R S T U

R S T U

P

P

P

P

Q

Q

1

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

118

The process Z is an algebraic expressions in compressed form. Ambiguity
may exist between P and U, and between Q and T. After expanding, the
complete algebraic expressions is

()()PY QX RS XT YU
P Q R S T U⊕ ⊕ ⊕ ⊕ ⊕

Any ambiguity is conserved in this algebraic expression. A CSP diagram
can make ambiguity better observable. The previous algebraic expression
is depicted in Figure 3-61.

Figure 3-61 Transparent representation of ()()PY QX RS XT YU
P Q R S T U⊕ ⊕ ⊕ ⊕ ⊕ .

Ambiguity can be observed independently for each level in the
hierarchy. In this example, there are no lines between P and U, or
between Q and T. These undefined interrelationships can be uniquely
derived from the operators on the user-defined relationships, or they can
be determined by the tool.

3.8.3 Balanced and unbalanced parenthesized
cycles

Cycles of parenthesizing relationships in a design should be balanced.
This means that in a cycle the weight (sum of indexes) of parenthesizing
relationships pointing in one direction should compensate the weight of
parenthesizing relationships pointing in the other direction. If these
parenthesizing relationships do not compensate opposite parenthesizing
relationships in the cycle then one cannot completely determine the
algebraic expression of this so-called unbalanced cycle. In an unbalanced
cycle, the algebraic expression reasoned in one direction is not the same
as the algebraic expression reasoned in the other direction.

X

QX
⊕

PY
⊕

R
P Q

S
T

RS
⊕ U

XT
⊕

YU
⊕

3.8 Analysis techniques and rules

119

The following technique can be applied to test whether cycles of
parenthesizing relationships are balanced or not. This technique allows
the design tool to give an error when a wrong index was specified. This
technique can also be used to determine the right index automatically on
a newly added interrelationship. Figure 3-62 illustrates an example of a
design (Figure 3-62a) where the user adds an interrelationship which
creates a cycle (Figure 3-62b). The operators on the interrelationships that
do not matter to explain the example are omitted from the illustrations.

Figure 3-62 Balancing cycles or determining indexes.

The procedure of checking or determining the index is as follows. The
weight of parenthesizing relationships pointing clockwise (see in the
example) is 2 and the number of parenthesizes pointing anti-clockwise
(see in the example) is 1. After subtraction the result is 2-1=1 whereas
in a balanced cycle the difference should be 0. In this example, it is not
difficult to see that the index of the new parenthesizing relationship
between P and R should be 2.

As illustrated above, a systematic approach exists that determines the
index of, for example, a newly added parenthesizing relationship that
forms a cycle. This technique should be carried out for each cycle. In case
two connected cycles determine two different indexes for a shared
relationship then the model has a structural error. This indicates that the
model needs to be revised.

Of course, the user can override any automatically generated index with
a different and valid index on order to specify a different hierarchy.

?

 S P

R

Q

S P

R

Q

(a) previous design (b) newly added interrelationship

newly added

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

120

3.8.4 Compositional conflicts

A compositional conflict is a failure in the design which may cause a
specification mismatch, deadlock, or a performance bottleneck in the
process architecture. A compositional conflict is defined as follows:

Definition (compositional conflict): A compositional conflict is a failure
formed by two compositional relationships that are in contradiction.

Three different kinds of compositional conflicts are categorized:

• Specification conflict. A process architecture that suffers from a
compositional relationship mismatch between processes cannot
be code-generated or model-checked because no solution can be
found.

• Deadlock conflict. A process architecture that is specification
conflict-free and suffers from a sequential relationship mismatch
between communications is a deadlock.

• Priority conflict. A process architecture that is specification
conflict-free and suffers from a priority mismatch between
communications introduces bottlenecks that slow down the
reactiveness or responsiveness of the process architecture.

The graphical modelling language is expressive enough to detect these
compositional conflicts in designs, as is shown below. A systematic
approach exists for each conflict that is based on a similar technique
applied to different contexts.

A process architecture that suffers from a specification conflict requires a
redesign. A process architecture that suffers from a deadlock conflict or a
priority conflict may require a redesign or it may require a buffered
channel to solve the conflict. In some worst-case timing, a priority
conflict can cause starvation, which can evolve to livelock or deadlock.
Hence, the user is interested whether or not the process architecture is
compositional conflict-free. The detection of compositional conflicts in
process architectures can be automated by the design tool following the
rules, as described in the following sub-sections. The design tool could
warn the user if an incorrect operator or a wrong index is applied.

3.8 Analysis techniques and rules

121

Specification analysis

Specification analysis is the examination of specification conflicts in the
design. For example, Figure 3-63a shows a diagram with sequential
relationships; (P,Q,R,→). The relationship between P and R can be
derived from the user-specified path, e.g. (P,R,→). During design, the
user can decide to specify an interrelationship between P and R. See
Figure 3-63b. The sequential operator causes a compositional conflict. In
this case (P,R,→) and (P,R,←) are in contradiction. Two or more
relationships between two processes with different operators, including
derived interrelationship, are forbidden. Thus, Figure 3-63b suffers from
a specification conflict.

Figure 3-63 Example of specification conflict:
(a) derived relationship,
(b) overriding relationship that is in contradiction.

Figure 3-63 shows triangular cycles. A triangular cycle is a cycle of three
processes that are completely connected by compositional
interrelationships. The compositional analysis rule in Appendix G is
applied for each triangular cycle in the CSP diagram. Any not conflict-free
result is a specification conflict.

Deadlock analysis

A process architecture that is specification conflict-free may still suffer
from a deadlock conflict. The deadlock causes the program to stop at
run-time. Deadlock is a synchronization conflict between rendezvous
communication and sequential relationships between these
communications.

(b) specification conflict (a) ; ;P Q R

P Q R P Q R

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

122

Definition (deadlock): A deadlock is a failure of two processes to
cooperate with each other because of not being able to agree on a
common event, although they are willing to participate in other events.

A good solution in finding deadlocks is using formal deadlock checkers.
For example, a process architecture could be translated into readable CSP
and analyzed by a tool like FDR (2004). The tool will prove if the design
is deadlock-free. This is only possible if the process architecture is
specification conflict-free, but not necessarily deadlock-free.

During design it would be convenient to detect and to warn about the
presence of deadlocks before finishing the model. Here, a technique is
described for finding and for reasoning about deadlocks in the design
phase of the project. This is based on the conflict-free checking
techniques involving primitive communication processes. Deadlock can
be traced in the CSP diagram before run-time or code generation. The
primitive communication processes play an important role in deadlock
analysis.

For example, Figure 3-64a shows a model that is specification conflict-
free but suffers from deadlock. In this case, the communication diagram
and composition diagram are depicted in one model. Figure 3-64b
illustrates that this model is specification conflict-free by applying the
specification analysis technique. The merging of temporal processes,
being part of the analysis technique, is illustrated with the help of dotted
rectangles. These dotted rectangles are not part of the CSP diagram. Since
the model is specification conflict-free, the model can be code generated
and executed.

At run-time, the primitive communication processes synchronize on
channel communication and on barrier synchronization. They maintain
in a locked state forever, they deadlock. In the procedure of finding
deadlock conflicts we define a preliminary step that allows us to detect
these kinds of conflicts.

3.8 Analysis techniques and rules

123

Figure 3-64 Example of deadlock conflict:
(a) original design,
(b) specification conflict-free,
(c) compositional conflict using rendezvous processes.

Given the fact that channel-ends and barrier-ends always rendezvous
with each other on communication, this instance of communication
represents a rendezvous process at run-time. The compositional
relationships between the primitive communication processes must be
(equally- or unequally-prioritized) parallel. Visualizing rendezvous
processes is only used for deadlock analysis. A rendezvous process
merges both ends of a channel or barrier to one anonymous process. See
the dotted rectangles in Figure 3-64c. Note that parenthesizing symbols
are ignored and the design is not altered by this analysis technique.

For this analysis technique it is useful that the model is flattened.

1. Merge all pairs of primitive communication processes together
into rendezvous processes. This is called a scenario. In case
primitive communication processes are part of an alternative
relationship, this must be treated as a choice of communication.
Each choices results in another scenario. Multiple scenarios must
be analyzed separately.

2. For each scenario the compositional relationships between the
rendezvous processes must be checked for sequential conflicts. A
sequence conflict is a compositional conflict whereby sequential
relationships are in contradiction. This is based on the same

! ?

* *

(a) (b)

! ?

* *

! ?

* *

(c)

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

124

technique as for detecting specification conflicts concerning only
sequential relationships. This is similar as illustrated in Figure
3-64.

Any deadlock in the process architecture can be shown in the design by
highlighting the paths in, for example, the colour red.

This analysis technique can incorporate logical decisions, such as
conditional guards and if-then-else constructs. This may results in a large
amount of scenarios. The benefit of this technique is that each scenario
can be checked individually and it does not cause a state explosion in the
model-checker. This analysis technique is a similar to the deadlock-
checker developed by Martin and Jassim (1997), which is based on a
graph of states. This technique is used by the model-checker FDR (2004).
CSP diagrams could be checked by FDR and feedback from FDR can be
depicted in the diagrams, which shows the user the conflict in the design.
Anyway this graphical modelling language offers the notation to depict
deadlock in CSP diagrams.

Priority inversion analysis

With a similar technique as described in the previous section one can
find priority conflicts. Priority conflicts are caused by unequally-
prioritized parallel operators that are in contradiction.

An example is shown in Figure 3-65. This example suffers from a priority
conflict between rendezvous processes, which means that the model
suffers from a priority inversion problem. The priority inversion problem
can have a significantly burden on the performance of the program. It
this case, a higher priority process can be blocked by the lower priority
process and as a result of that it may be likely that the deadlines of the
higher priority process cannot be met.

3.8 Analysis techniques and rules

125

Figure 3-65 Priority conflict = priority inversion problem.

Usually, eliminating priority conflicts by correcting unequally-prioritized
compositional relationships will result in a better design. In case where
priority inversion is inevitable in the design, which is possible, one could
solve the problem by use a buffered data channel between processes
executing at different priorities in order to avoid blocking. Buffering does
not apply to call channels and barriers, for which a redesign is required
to solve the priority conflict. This information can be used by the design
tool to change rendezvous data channels into buffered data channels,
which solve priority conflicts. With this information, together with the
frequency of the processes, one can determine over-sampling or sub-
sampling type of buffered data channels.

3.8.5 Companionship between communication
and composition

Compositional relationships are orthogonal to communication
relationships. However, the compositional relationships can determine
the need for buffered communication. The valid configurations for data
channels are depicted in Figure 3-66a-f.

! ?

* *

! ?

* *

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

126

Figure 3-66 Valid data channel configurations:
(a) rendezvous channel or buffered fifo channel
(b) buffered sub-sampling channel,
(c) buffered super-sampling channel,
(d) buffered fifo channel,
(e) buffered fifo channel with initial value,
(f) buffered fifo channel with initial value.

For each configuration, the communication relationship and
compositional relationship are depicted in one figure. Figure 3-66a-c,
buffered channels can improve the performance of a process architecture
in circumstances where unbuffered channels cannot sufficiently decouple
multiple frequencies. Buffered communication has the side effect that it
reduces the number of context-switching or solves priority conflicts. One
should be careful with buffering in Figure 3-66a, because buffered
communication can jeopardize the reactivity and responsiveness of a
concurrent system. Buffered channels can compensate latencies on
external channels. Figure 3-66d-f are useful when existing processes with
existing process interfaces must be connected in compositions other than
parallel. In case a channel is connected between guarded processes in an
alternative construct, the channel c must not be part of the guards (see
Figure 3-66f).

Communication via call channels and barriers are restricted to equally-
and unequally-prioritized parallel compositions. See Figure 3-67 and

(a)

(d) (e)

(b) (c)

P Q

P Q P Q

P Q P Q

(f)

P Q

 , ,

b a c

a [..] b [..]

3.9 Design freedom

127

3-68. Method calls without return values could be buffered by a buffered
call channel, but this feature is not support by the graphical modelling
language. Thus, call channels and barriers are unbuffered. In case of a
priority conflict, a redesign is required to solve the performance
bottleneck

Figure 3-67 Valid call channel configurations.

Figure 3-68 Valid barrier configurations.

3.9 Design freedom
The proposed graphical modelling language comprises significant
freedom during design, which makes the development of CSP diagrams
easier in the following ways:

1. The user can leave compositional relationships between processes
undefined when any order of execution is accepted.

2. The user is no longer restricted to a predefined framework. The
user can influence the framework of code generation by defining
compositional relationships between processes. The framework
will adapt to the desires of the user.

3. The design can be further refined by adding compositional
relationships whereby redundant information is allowed. One can

(a) (b) (c)

P Q P Q P Q

(a) (b) (c)

P Q P Q P Q

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

128

over-specify the design to be sure that the requirements are met.
Over-specifying can be useful when the diagram is viewed from
different perspectives and this does not have to make the
program more complex. Of course, redundant relationships can
also be automatically removed or hidden by the design tool.

4. The run-time environment (kernel) takes care of the non-
deterministic behaviours of the parallel and alternative
relationships. The program becomes truly event-driven and the
user does not have to concern with lower-level states in regard of
multithreading or sequencing.

5. A design tool can frequently check the model for design failures,
like compositional conflicts. During design, any design failures
are treated as warnings. Such a tool can highlight the path(s) in
which a particular failure occurs. This could be done similarly as
a word processor that underlines the incorrect words or suggest
other grammar. In short, the tool can guide the user to improve
the model without restricting the design freedom. In the final
model any remaining failures are considered as errors.

3.10 Refinement and verification
Process architectures should satisfy the desired requirements. If these
requirements are not met then the design is incomplete and it is subject
for further refinements. A CSP diagram encompasses information that
allows verifying the design prior to executing the code. This makes any
trial-and-error approach in early stages in the development unnecessary.

In case the design does not meet the requirements, additional
relationships must be specified—the model needs to be refined. The user
will undertake refinement steps until the requirements are achieved. The
refinement and verification approach is a continuously interactive
process.

Cycles specify redundant compositional relationships which help with
detecting specification conflicts between the specified relationships and

3.11 Conclusions

129

the requirements. The ultimate refinement step results in a complete
composition diagram whereby all processes are visually connected to
each other. This can be simplified by tree-structures using deep or flat
hierarchies. The density of connections in a complete composition
diagram makes the model complex and difficult or impossible to read.
Although, a complete composition diagram has a unique solution,
usually, a unique solution is not the goal of the user. Any valid solution
that satisfies the requirements is adequate. This can be useful when the
hardware provides feedback and determines an optimal solution that
best performs on the embedded computer system.

3.11 Conclusions
In this chapter, a graphical modelling language is defined, which is
useful for designing process architectures in the form of CSP diagrams.

A CSP diagram consists of two distinct views, respectively the
communication diagram and the composition diagram. Each diagram
describes a different concurrency concern in the system. The
collaboration between both diagrams provides valuable information
about their compositions that is useful to determine design conflicts, such
as specification conflicts, deadlocks, and priority inversion problems.
This information can determine the exact type of communication (e.g.
rendezvous, buffered, sub-sampling, super-sampling) between processes
that is necessary to solve design conflicts or to optimize the performance
of the process architecture in a systematic way. Composition diagrams
can be traced for various design decisions which may be in conflict with
the specification or mind set of the user. Thus, CSP diagrams incorporate
guidance for the user to avoid design and coding errors.

The language is process-oriented and it extends to object-orientation. The
presented graphical modelling language acts as a glue-logic between
structured methods and object-orientation and thus providing
continuation between the two paradigms. The graphical modelling
language does not prescribe the design process of developing concurrent
systems, but it offers guidance for stepwise refinement. The language can

 3. Graphical Modelling Language for Specifying Concurrency based on CSP

130

be used at every level of abstraction with the same graphical notations
and semantics. Furthermore, the language abstracts away from hardware
or software implementations. CSP enhancements have been
incorporated, such as exception handling, priorities, timing, and
imperative facilities. These enhancements are essential for designing real-
time process architectures.

The graphical modelling language does not prescribe styles for designing
CSP diagrams. The user can design complex diagrams that are
unreadable to others. Thus, the user is responsible for the readability of
the diagrams.

Essentially, the resulting designs must be implementable. The design
process is guided by rules, such as:

• Compositional analysis rule—useful for analyzing compositional
CSP constructs. It is used for determining operators on hidden
interrelationships derived from user-specified paths of
relationships, for writing ambiguous or unambiguous algebraic
expressions, and for detecting specification conflicts.

• Reallocation rules—rules for reallocating relationships with
another, possibly nearest, process while preserving the algebraic
expression.

• Balancing cycles—technique that ensures a balanced cycle of
correct parenthesizing indexes.

These rules offer analysis approaches that guarantee consistency and
correctness, such as

• Specification analysis—finding specification conflicts whereby
relationships are in contradiction in the design.

• Deadlock analysis—finding deadlock by searching for sequential
conflicts between primitive communication processes.

• Priority inversion analysis—finding priority inversion problems
by searching for priority conflicts between processes.

A CSP diagram can be mathematically analyzed (model-checked),
simulated, and finally executed on a dedicated embedded real-time

3.11 Conclusions

131

system. CSP diagrams are a sort of state diagrams that do not suffer from
state explosions.

Design tools that support this graphical modelling language are
inevitable in order to really benefit from CSP diagrams.

C H A P T E R 4

A CSP library for
compositional programming

 of concurrent Software
4 A CSP library for compositional programming of concurrent software

4.1 Introduction
Processes and their interrelationships, as discussed in Chapter 3, are
detailed by an object model. The object model is called Communicating
Threads (CT). CT is based on object-oriented techniques described by
class diagrams and CT is implementable by object-oriented
programming languages. This results in a CSP-based library for each
object-oriented programming language. The library implements an
application programming interface (API), which is used to program
communicating processes and compositional constructs.

The CT API for the programming language Java is defined and presented
in this chapter, which is called Communicating Threads for Java (CTJ).
Other libraries have been created for the programming languages C (in
object style) and C++. These libraries are called Communicating Threads for
C (CTC) and Communicating Threads for C++ (CTC++). CTC and CTC++
are native coded and they are therefore much faster and more compact
than CTJ. CTC++ is used for high-performance real-time control
applications, which are discussed in Chapter 6. CTC is useful for
processors that are not supported by a C++ compiler. CTC is part of
CTC++. CTJ is used for prototyping and illustrative purposes. Each

 4. A CSP library for compositional programming of concurrent software

134

library is influenced by the limitations of the syntax and taxonomy of the
programming language.

CTJ illustrates that the user will be freed from explicitly dealing with low
level multithreading issues, e.g. creating, destroying, and synchronizing
threads. More precisely, the user will be using threads without
programming threads directly. CTJ offers clean compositional design
patterns without polluting objects with synchronization constructs (e.g.
monitor constructs). CTJ outlines the fact that the notion of processes is
inevitable in order to let object-orientation succeed in concurrent
software.

In Section 4.2, the approach and background of the implementation are
motivated. CTJ is described in Sections 4.3 to 4.7. In Section 4.3 the
process interface is described. The channel and barrier interfaces are
described in Section 4.4 and 4.5 respectively. These implement the
communicational interrelationships as discussed in Chapter 3. The
compositional constructs are described in Section 4.6. These constructs
implement the compositional interrelationships as discussed in Chapter 3.
Timing and sampling are crucial in real-time systems and these issues are
discussed in Section 4.7.

4.2 Approach and background

4.2.1 CT object model

The CT object model presents a concurrency model for building reliable,
robust, and real-time concurrent software in object-oriented
programming languages. The CT object model is described by classes,
interfaces, and relationships that separate concerns by object-oriented
techniques. The CT object model is the meta-model for CTJ and other
CSP libraries. Several aspects of the occam and Ada languages (Burns
and Wellings, 1990) have been incorporated into the object model. The
development of CT was based on a rapid prototyping strategy, because
the development was strongly driven by technical issues and alternative

4.2 Approach and background

135

solutions had to be investigated. A good match between the API and its
low level implementation is essential. CT has to be efficient and therefore
it was designed in such a way that the performance is eminent for a large
class of embedded systems with limited systems resources. The
implementation has to be able to deal with common implementation
detail, like interrupt handling, timers, memory management, and I/O
control. The design of CT is described with the help of class diagrams
(UML 1.4) and this process is interleaved with coding in Java.

The semantics of the CT constructs are a subset of the semantics of the
CSP operators. The CSP theory comprises non-determinism, which is as
such not implementable on computers. For example, fairness and
unfairness of thread scheduling is based on priorities, which is not
judged or captured by the CSP operators. CSP abstracts away from that.

Priorities are important for developing real-time software. On a single
processor, priority policies are important to accomplish efficient
execution of the program. Priority policies can be seen as a gloss on the
semantics of the CSP operators. They bring about restrictions to the
theoretical ordering of events in event-traces. This should have no effect
on deadlock or livelock checking with untimed CSP. Note that priorities
have effect on a timely basis like performance. However, a poor priority
scheme may result in poor performance. The worst-case scenario is
starvation, which may lead to livelock or deadlock. This kind of
starvation indicates that the program cannot meet its real-time
requirements anyway. Since the CSP operators are compositional,
priorities and priority policies must also be compositional. That is,
priorities are relative and not absolute.

The CT object model must be consistent with the graphical modelling
language as defined in Chapter 3.

4.2.2 Java thread model

Java encompasses a thread-model in the language, supported by its run-
time environment. Currently, Java suffers from significant run-time
overhead and high memory footprint. Furthermore, Java is not suitable

 4. A CSP library for compositional programming of concurrent software

136

for real-time applications. Welch (1996) illustrated this problem by the
“The Starving Philosophers” example. This example shows that the Java
monitor is statistically correct, but the monitor can cause starvation on
certain timing constraints. It is possible that with certain timing, certain
threads always stay on the waiting queue of the monitor. These threads
will starve to death, even though there is enough time for the program to
meet their real-time requirements.

4.2.3 Communicating Threads for Java

CTJ presents an alternative for the Java thread model for building
reliable, robust, and real-time concurrent software in Java. CTJ is the
implementation of the CT object model in Java. CTJ was not intended for
high-performance control systems. Despite the previously mentioned
disadvantages of Java, Java is considered to be a good programming
language for exercises and educational purposes on different target
computers. The programming languages C and C++ are used for high-
performance embedded real-time systems. Therefore, CTC, CTC++, and
CTJ were developed to illustrate the portability of the object-model to C,
C++, and Java. CTC and CTC++ illustrate optimized performance (test
show that CTC and CTC++ are about 400 times faster than CTJ), low
memory-footprint, and portability to a large variety of processors.

Consistency between CT and the graphical modelling language in
Chapter 3 should allow for a straightforward implementation of CSP
diagrams to Java with CTJ (or to C/C++ with CTC/CTC++).

4.2.4 Aspects

Applying object-oriented techniques, object-oriented programming
languages, and applying heterogeneous computer hardware at a
reasonable performance, are desired requirements that were previously
discussed. Three other requirements are important aspects that were
considered during the design and implementation of the CT object model
and the CSP libraries.

4.2 Approach and background

137

These aspects are:

• Simplicity

• Portability

• Generality

These three aspects are already an integral part of the graphical
modelling language in Chapter 3. This is because the CSP theory
comprehends simplicity, portability, and generality by offering
abstraction and fundamental concepts.

Simplicity

Usually, libraries and frameworks grow and become more complicated
with addtional features, that were forgotten, that compensate limitations
of the already implemented features, or that one thinks that may be
needed in the future. However, it takes real skills to keep features out
that are not really necessary. This is what the occam’s razor is intended
for. With the occam’s razor in mind, every feature is judged for necessity.

CT was developed with the Occam’s razor in mind. The Occam’s razor
(Beckett, 1994; Hiroshi, 1997; Skeptic, 2004) is an approach to make things
as simple as possible, but not simpler. Relevant information should not
be lost due to simplification. It is important to meantion that the Occam’s
razor is inherently part of CSP. Consequently, CSP offers a minimal set of
necessary concepts to describe concurrent systems. This explains the
name occam as the name for the programming language that implements
a subset of CSP (Inmos, 1988).

Portability

CT aims to be portable to a large variety of embedded computer systems
and to a variety of object-oriented programming languages. Java is a
portable programming language. Other object-oriented programming
languages, such as C and C++, are not always portable. These native
languages can address platform specific instructions.

 4. A CSP library for compositional programming of concurrent software

138

In order to gain portability and maintain program structure, it was
decided to write code in portable C/C++ and as little as possible in
assembler language. About 99% of CTC/CTC++ is written in portable
C/C++ and less than 1% is processor-specific. Portable C/C++ code is
written in C/C++ with no platform specific pointers or dependencies.
The processor-specific methods must be implemented for each CPU and
perhaps specific for each different operating system. An overview of the
processor-specific methods is given in Appendix B. Assembler language
can be used when processor-specific instructions are required (e.g.
swapping stack pointers or saving and restoring the processor context).

Generality

CT aims to be generally applicable for concurrent computer systems. CT
should be applied to all kinds of concurrent and real-time applications
and was not made for control applications alone.

The API of CT should obey the semantics of the CSP concepts and it is
designed in such a way that the API solely serves the application. The
implementation of the API is devoted to the CPU, but the API is devoted
to the user. This holds for any platform or for different programming
languages. This implies that the user should not notice major differences
in the semantics of the CSP concepts for different programming
languages.

The CSP constructs, channels, and barriers simplify concurrent software
by abstracting away from the underlying thread control. Therefore, CT
can implement its own threads using an embedded scheduler (as in the
current implementation) or CT can borrow threads from an operating
system (this can involve a POSIX library). The API of CT should abstract
away from single- and multi-processor systems.

4.3 Processes

139

4.3 Processes
A process is a component that can play the role of a CSP process or a
process instance. When the process is performing its (real-time) task, it
plays the role of a CSP process. A process that is not running (e.g. has not
started or has terminated) can be treated as a process instance. A process
instance is the existence of a process in memory, like an object. Either
way, a process is not an object.

Figure 4-1 Role game of a process (state diagram).

Figure 4-1 illustrates the role game between the process instance and the
CSP process. A process that is constructed and instantiated becomes a
process instance. Once the process instance is invoked to run, it plays the
role of a CSP process. When a CSP process terminates, it returns back
into a process instance. A process dies when the process instance is
destructed.

The distinction between CSP processes, process instances, and objects
serves separate concerns in the program. This distinction was discussed
in Section 3.2. In CT, process classes are distinguished from object classes.
A process class describes and implements a process communication
interface and a process communication interface for processes of the same
kind. An object class describes and implements an object interface for
objects of the same kind. Java supports only object classes. The Java
syntax can be used to describe process classes by imposing an
arrangement of rules and semantics.

Process Instance

construct

CSP Process

destruct

run

return

 4. A CSP library for compositional programming of concurrent software

140

4.3.1 Process instance interface

The process class describes a constructor, a destructor, support methods,
and a single run() method. These elements specify the process instance
interface. The implementation relationship between the class and interface
is shown in Figure 4-2a-b. Figure 4-2a illustrates the construction of the
MyProcess class. This can be simplified in the UML by using the
stereotype label <<process>>, see Figure 4-2b.

Figure 4-2 UML class diagram of MyProcess process:
(a) by interface inheritance,
(b) by stereotyping.

The run() method, as defined by the csp.lang.Process interface, is
required for every process. Therefore, a process must implement the
csp.lang.Process interface, which specifies a public run() method. This is
similar as for Java’s java.lang.Runnable interface. is shown in Listing 4-1.

public interface csp.lang.Process {

 public void run()

 throws ExceptionSet;

}

Listing 4-1 The process interface.

The run() method implements a sequential task that the process
performs when this method is invoked by its parent process. In real-time
systems this run() method performs a real-time task. The process can
throw a set of exceptions of type ExceptionSet when one or more

MyProcess

+ run() : void

<implements>

csp.lang.Process

<<process>>
MyProcess

+ run() : void

(a) (b)

+ run() : void

4.3 Processes

141

exceptions occur in the process. See Section 4.6.4 for more information on
exceptions.

The parent process is allowed to call public methods on its child process
instances to set up its pre-condition, to retrieve its post-condition, or to
execute its run() method. The run() method or other methods can never
be invoked simultaneously by multiple processes since a child process is
owned by one parent process at the time. This simple design rule strictly
separates each thread of control and enables a secure multithreading
environment. Once the run() method is called on the process instance,
the role of a process instance switches immediately to the role of a CSP
process. Calling a public method on a CSP process is illegal and only
channels or barriers should be used to change the state of a CSP process.
When the process terminates (i.e. the run() method returns) then the role
of a CSP process switches back to process instance. See Figure 4-1.

Figure 4-3 depicts a class diagram that shows the associations of a
process with other processes, channels and barriers.

Figure 4-3 Process associations.

Listing 4-2 shows an example of a template of a process class.

class MyProcess implements csp.lang.Process {

 ... private or protected declarations for local use

 public MyProcess(process communication interface) { ... }

 ... methods defining the process instance interface

CallChannel

+ …

<associates>

Process

+ run() : void

Channel

+ …

Barrier

+ …

2..m
0..n 0..n 0..n

0..n

1

<has>

<is part of>

 4. A CSP library for compositional programming of concurrent software

142

 public void run()

 throws ExceptionSet { ... do something }

 public int get_parameter() { ... }

 public void set_parameter(..) { ... }

 public void add(..) { ... }

 public void remove(..) { ... }

 ... private or protected methods for local use

}

Listing 4-2 Example of a process class.

The public constructor is called once on the instantiation of the process
class. The constructor configures the process. The constructor sets up all
of the initial resources, like references to channels, references to barriers,
initial parameters, and the requisite pre-condition for the run() method.
After construction, the reference to the process instance is available and
offers the run() method waiting to be invoked.

The pre-condition of a process is the constraint that must be true when
the run() method is invoked. The post-condition is the constraint that
must be true after the completion of the run() method. The post-
condition is usually the pre-condition for the next run. The initial state of
a process is usually set by the constructor at instantiation. State handling
methods (e.g. add(..), remove(..), set_parameter(..), get_parameter()) can
be used to initiate or retrieve the state of a process after instantiation, but
before or after invoking the run() method. These methods are thread-safe
since they are exclusively used by the parent process. These methods
offer dynamic construction of the process at run-time and they must
strictly serve the run() method. An example of using state handling
methods is described in Appendix D.5.

4.3.2 Process communication interface

The channel-ends and barrier-ends that are passed via the constructor
specify the process communication interface. These channel-ends and
barrier-ends are the ports through which the process communicates with
other processes. One can observe the behaviour of the process through

4.4 Channels

143

these ports. The process communication interface does not offer public
methods, but it may specify the services (methods) that can be requested
via channels.

4.4 Channels
Channels establish interactions between processes. Channels are
intermediate objects that allow anonymous and point-to-point
communication between two processes. Processes know their channels
but they do not know the processes they interact with. Channels take
care of synchronization, scheduling, and message delivery of data via the
underlying hardware. There are two types of channels supported by CT.

These channels are:

1. data channels

2. call channels

Data channels are lower-level channels for sending primitive data or
objects from a producer process to a consumer process. Data channels do
not return objects or data. Call channels are higher-level channels for
requesting a method call from a client process to a server process that
will perform the call once it has accepted the request. Call channels may
return objects or data.

4.4.1 Synchronization

Channels are thread safe, i.e. they are synchronized objects so that no race
hazards can occur within channels. A channel protects its internals by
mutual exclusion between its readers and writers, or callers and callees.
Thus, CTJ channels can be safely shared between multiple processes.

 4. A CSP library for compositional programming of concurrent software

144

4.4.2 Scheduling

A writer process can write to a channel at any time and the process will
be blocked to wait for some other process to read from the channel.
Similarly, a reader process may read from a channel at any time and it
will be blocked to wait for some other process to write on the channel.
Blocking is entirely passive, the blocked process consumes no processor
time and another (non-blocking) process gets the processor time to
execute instead. When both processes are willing to communicate then
instantaneous communication will happen and no withdraw is
possible—this is called rendezvous. On rendezvous they engage in the
communication event. After the communication event both processes are
unblocked and both can continue in parallel. On a single processor
system, the channel determines which thread of control is scheduled
first. The channel complies with a prioritized scheduling policy to ensure
fairness. Due to the rendezvous principle one can abstract away from
thread states. This is explained in Chapter 5.

Buffered data channels can store data that is to be delivered at a latter
time. Buffered data channels extend the rendezvous principle in
circumstances that requires unblocking communication between
processes, which are executing at different frequencies (Chapter 5). In
this circumstance, buffered data channels extend the scheduling policy
that is required to guarantee that these processes (at different priorities)
can meet their deadlines. The total scheduling policy of a process
architecture is composed by the type of channels.

4.4.3 Message delivery

Channels can pass messages (e.g. data, objects, requests) with pass-by-
value or with pass-by-reference. Each mechanism has its advantages and
disadvantages.

• The pass-by-value mechanism is safe, fast for small messages,
reuses memory efficiently, independent of shared and
distributed memory system, and has a good reputation with
occam on transputers.

4.4 Channels

145

• The pass-by-reference mechanism is fast for large messages on
shared memory systems. Precautions are required to use it
safely. Cloning messages is required on message delivery
between distributed memory systems. Cloning requires
expensive memory management. A simple and elegant solution
is passing ownership of the message. That is, a sender sends a
reference of an object and immediately releases its ownership of
the reference. Consequently, the receiver will be the only
process claiming the ownership of the object.

Data channels support both message delivery mechanisms. Call channel
support pass-by-value for primitive data types and pass-by-reference for
objects. These message delivery mechanisms are further discussed in
Appendix H.

4.4.4 Data channels

A data channel transfers primitive data types or objects in one direction.
Data channels are initially unbuffered and do not store messages in the
channels. A generic data channel has been developed from which other
data channels can be derived.

Generic channel type

In CTJ, a data channel interface consists of a channel input interface and a
channel output interface. The channel input interface specifies one or more
read(..) methods and the channel output interface specifies one or more
write(..) methods. Processes communicate by reading or writing on
channels using these methods.

The generic data channel is implemented by the Channel class. Its
read(..) and write(..) methods are protected and only available for its
subclasses. The Channel_of_Object class makes these methods public. The
Channel_of_Object channel can communicate all kinds of objects, which
provides a great deal of flexibility and generality. The Channel_of_Object
class implements a channel input interface and a channel output

 4. A CSP library for compositional programming of concurrent software

146

interface; the ChannelInput_of_Object interface and the
ChannelOutput_of_Object interface respectively. For generalization, the
ChannelInput_of_Object is of type ChannelInput and
ChannelOutput_of_Object is of type ChannelOutput. See Figure 4-4.

Figure 4-4 UML class diagram of the Channel_of_Object channel.

The ChannelOutput_of_Object interface specifies the method

public void write(Object object)

and the ChannelInput_of_Object specifies the method

public Object read(Object object)

These read() and write() methods support both pass-by-value and pass-
by-reference. The choice of message delivery mechanism depends on the
type of channel in a distributed or shared memory system and it depends
on the ability of the receiver to reuse memory.

The write(object) and read(object) statements are used to allow pass-
by-value. On rendezvous the channel copies the content of the specified
object in write(object) at the producer side to the specified object in
read(object) at the consumer side of the channel.

Channel

Channel_of_Object

ChannelOutput_of_Object ChannelInput_of_Object

ChannelInput ChannelOutput

+ write(Object object) : Object
+ read(Object object : Object

+ read(Object object) : Object

<implements> <implements>

<implements> <implements>

<inherits>

<inherits> <inherits>

- write(Object object) : Object
- read(Object object : Object

+ write(Object object) : Object

4.4 Channels

147

In circumstances where the size of messages can change, cloning or
reference passing is required. In order to enforce pass-by-reference,
statement object = read(..) is required. This allows receiving objects,
arrays, or strings of variable length. It is important that the sender
releases its ownership of the message that is passed. The object =

read(object) statement can choose between pass-by-value and pass-by-
reference. The choice depends on the platform and the implementation of
the data channel. For example, a distributed system may require cloning
objects over a remote channel. Since the objects are specified by the
read() and write() methods, their memory can be efficiently be reused at
both sides of the data channel.

The channel may provide additional read(..) and write(..) methods
that can support cloning or reusing message objects. The following
read(..) methods always returns a clone of the message or an
IOException when cloning is not supported.

obj = chan.read(null);

obj = chan.read();

The programmer or the garbage collector must destroy the message
object obj when it is no longer used. These kind of read(..) methods
depend on dynamic memory management and for this reason these
methods are usually avoided for real-time programs.

If the messages are of fixed length and reusable then the return value can
be ignored, as in:

chan.read(obj);

A producer/consumer example is given in Appendix D.1

Restrictions and compatibility

Processes can only be connected when their process communication
interfaces specify pairs of channel-inputs and channel-outputs of the
same type. Also, the source and destination message objects must be of
the same type otherwise an exception will be thrown to both processes.

 4. A CSP library for compositional programming of concurrent software

148

This implementation of the generic data channel can only pass objects
with public attributes. Protected and private attributes are inaccessible by
the channel copy() method. The copy() method allows for deep copying
(i.e. copying object within objects) and reference passing.

Overview of features

The generic data channel was designed and implemented in such a way
that:

• different data channels can be derived from this
implementation,

• hardware and software concerns are separated,

• implementation complexity problems can be explored,

• one can learn about the feasibility of a generic implementation.

The generic data channel provides the following features:

• a primitive interface,

• support of object transfer,

• support of pass-by-reference and pass-by-value,

• safe for multiple readers and multiple writers (Any2Any),

• usable as a guard in alternative constructs,

• initially zero-buffered, but can be extended with a buffer,

• support of shared memory and distributed communication,

• support of timed communication events,

• support of a priority scheduling policy for optimal performance
on single processor systems.

The generic data channel implements the Any2Any channel. An
Any2Any type of channel is a safe channel between any (one or more)
writers to any (one or more) readers. One2Any, Any2One, and One2One
channel types, as in JCSP (Welch and Austin, 1999), can be derived from
the generic data channel. These channel types restrict channel sharing

4.4 Channels

149

and therefore they can offer optimized performance and documentary
help. On the other hand, using an One2One data channel in an Any2Any
connection makes the channel crash. The generic data channel will not
crash and processes behave in a natural way, such as blocking or
deadlocking. For now One2Any, Any2One, and One2One channel types
have been postponed and put on the list of recommendations.
Furthermore, the use of templates (as found in C++) would make
creating channels simpler. Templates in Java may become a useful
feature in the upcoming Java 1.5 (Sun Microsystems, 2004).

Specific channel types

The Channel class implements generic methods that one can use to create
channels for specific message types. The reads and writes on the channel
are delegated to the generic read(..) and write(..) methods of the
Channel class. In Chapter 3, these read(..) and write(..) methods are the
primitive communication processes on data channels.

In CTJ, Channel_of_Integer channels send objects of the Integer class (in
the csp.lang package) or data of primitive data type int. The Integer
object type is basically a wrapper for int with additional methods. The
Integer wrapper is a modified version of the Integer class in the
java.lang package; the int value attribute has been made public rather
than private. Hence, channels can only copy public attributes.

The ChannelOutput_of_Integer interface specifies two write(..) methods:

public void write(Integer integer)

public void write(int integer)

The ChannelInput_of_Integer interface specifies two read(..) methods:

public Integer read(Integer integer)

public int read()

Any write(..) method can be used in conjunction with any read(..)
method. The user can mix Integer and int types at the sender or receiver

 4. A CSP library for compositional programming of concurrent software

150

side. If Java would support multiple return types then public Integer
read() could be added. This is on the wish list for Java 1.5.

The Channel_of_Integer channel can contain a special link driver as
specified by its constructor:

Channel_of_Integer(LinkDriver linkdriver)

When a link driver is specified, the reads or writes on this channel are
delegated to the specified link driver; otherwise they are delegated to the
Channel class. This concept allows for the plugging in of link drivers that
can delegate communication to hardware or via a special buffer.

csp.lang.… Channel_of_… ChannelInput_of_ … ChannelOutput_of_ …

Object

Boolean

Byte

Char

Double

Float

Integer

Long

Short

Reference

extra

Channel_of_Object

Channel_of_Boolean

Channel_of_Byte

Channel_of_Character

Channel_of_Double

Channel_of_Float

Channel_of_Integer

Channel_of_Long

Channel_of_Short

Channel_of_Reference

Channel_of_Trigger

Object read(java.lang.Object)
Object read()

boolean read(csp.lang.Boolean)
boolean read()

byte read(csp.lang.Byte)
byte read()

char read(csp.lang.Character)
char read()

double read(csp.lang.Double)
double read()

float read(csp.lang.Float)
float read()

int read(csp.lang.Integer)
int read()

long read(csp.lang.Long)
long read()

short read(csp.lang.Short)
short read()

Reference read(csp.lang.Reference)
Reference read()

void read()

Void write(java.lang.Object)

void write(csp.lang.Boolean)
void write(Boolean)

void write(csp.lang.Byte)
void write(byte)

void write(csp.lang.Character)
void write(char)

void write(csp.lang.Double)
void write(double)

void write(csp.lang.Float)
void write(float)

void write(csp.lang.Integer)
void write(int)

void write(csp.lang.Long)
void write(long)

void write(csp.lang.Short)
void write(short)

void write(Reference)

void write()

Table 4-1 CTJ wrappers and data channel interfaces.

The channel interface Channel_of_Integer is an example for all other
primitive data-type channels. Table 4-1 gives an overview of the default
data channel types that are provided by the CTJ library. A special
channel Channel_of_Trigger has been included which does not send

4.4 Channels

151

information but it is used to trigger processes. This strong typing allows
safety and interface matching.

Reference channel type

The Channel_of_Reference channel accepts only Reference objects. In fact,
the Channel_of_Reference channel is a wrapper of a Channel_of_Object
channel. A Reference object has a public Object object attribute for
sending object references, as shown in Listing 4-3. The tag value can be
used to identify the object. What is special about the
Channel_of_Reference channel is that the attribute object at the writer side
will be set to null by the write(..) method after communication and will
be set to null by the read(..) method before communication.

public final class Reference implements java.io.Serializable

{

 public static final int UNDEFINED = -1;

 // Public place holder for an object reference and tag.

 public int tag = UNDEFINED;

 public Object object = null;

 ... support methods

}

Listing 4-3 The Reference class.

Hardware link control

The channel interface abstracts away from the hardware, such as
memory or some device. Data channels encapsulate hardware control by
means of link drivers (Hilderink et al., 2000; Hilderink et al., 1998;
Hilderink et al., 1998). The concept of this framework is illustrated in
Figure 4-5.

Communication via channels provides platform independency that is
two-fold:

 4. A CSP library for compositional programming of concurrent software

152

1. Processes communicate with their environment (or hardware) via
channels and never directly.

2. The semantics and behaviour of channel communication is
identical for single processor systems as for distributed processor
systems.

Figure 4-5 illustrates data channel communication between two
processes at different levels of detail. The top figure shows the
conceptual data-flow between two processes, which are connected with a
communication relationship. The second figure illustrates the
communication relationship as an intermediate channel object. Thus far,
this is hardware independent. The third figure shows a link driver as
part of the channel object to which the write and read methods are
delegated. The write and read methods of the link driver carries out the
hardware dependent code. The last figure shows that this mechanism
scales for a distributed system.

Figure 4-5 CT channel framework.

hardware independent

channel

channel object

write read

channel object

write read

write read

link driver

channel
object

write read

write read

link driver link driver

channel
object

hardware dependent

Conceptual

Object-oriented

Separation of
concerns

Distributive

Processor 1 Processor 2

hardware independent

hardware dependent

4.4 Channels

153

The link drivers establish the connection and must be compatible to each
other. A special link driver framework has been developed that is used to
implement data channels for dedicated hardware, like analogue-digital
converters, counters, serial port, CAN, TCP/IP sockets, digital pins, etc.
These kinds of channels are called external channels. Data channels using
shared memory on a single processor are called internal data channels.
Processes do not know if they communicate with internal or external
data channels. Call channels do not support the link driver framework
and are therefore always hardware independent in CT. Data channels
should be used for communication via hardware.

There are two ways to create a hardware specific data channel in CT,
namely by means of:

1. Delegation—A link driver object can be plugged into a data
channel. The reads and writes will be delegated to the link driver
object.

2. Inheritance—A data channel inherits the LinkDriver class and
implements channel interfaces. The LinkDriver class provides the
necessary methods for synchronizing and controlling kernel
functions. The channel implements a link driver but processes
access the channel through the channel interface and not via the
link driver interface.

A guideline to separate concerns is that link drivers are the only objects
that strictly control the underlying devices. The CT link driver
framework is abstractly defined in such a way that it can be extended as
needed, without affecting the process architecture. Processes usually do
not use or create link drivers and become fully hardware independent.
Hardware dependent processes are considered to be network builders as
they setup and configure a network of processes and map the software
on the topology of the hardware. The use of network builders allows a
systematic approach, which makes the program highly hardware
independent and consequently portable. Porting a program to a different
target involves changing the network builders and leaves the other
processes intact.

 4. A CSP library for compositional programming of concurrent software

154

4.4.5 Call channels

A call channel allows a client process to pass a message to a server process
with the instruction that the server should perform a particular service
(method). When the server is willing to accept the request (or call) then
the service will be performed. It is the server process that performs the
service and not the client process. A client blocks on the service call on
the call channel until the server is ready to accept the method call and
has performed the methods. The accept(..) method is invoked on the
call channel by the server process when it is ready to accept a call.
Similarly, the server process will be blocked on the accept(..) method
until a client is invoking a method on the channel. Likewise, with data
channels, both processes must rendezvous to engage in the
communication event. Conceptually, this type of message passing is
different from method invocation on objects where the invokee must
follow the invoker. The channel strictly separates the behaviour of the
client and server, which simplifies compositional programming.

The call can specify arguments to be used by the service and any results
of the service can be returned to the client. Hence, data transfer via call
channels can be bidirectional and the arguments are passed by pass-by-
reference for objects and pass-by-value for primitive data types. The call
must release the ownership of objects that are passed as arguments. This
will prevent object sharing between the client and server. A service call is
light weight on single processor systems. In case the request is accepted,
the thread of control of the client process is borrowed and performs the
method on the server process at the priority of the server process, as if
the server performed the method.

As with data channels, the client process sees the call channel and not the
server process. Call channels were part of the occam3 language
specification (Barrett, 1993). They provide rendezvous in the sense of an
Ada entry-accept, but are considerably more flexible and lightweight.

The services a server process can offer are specified by its call interface. A
client can communicate with the server process via a call channel with
the same call interface. Services can be partitioned by multiple call

4.4 Channels

155

interfaces. The call channel concept is generic, but there is no one generic
call channel. A call channel can be straightforwardly generated from a set
of call interfaces (service types).

Figure 4-6 UML class diagram of MyCallChannel class.

The class diagram in Figure 4-6 depicts the relationships between the
different classes that constructs a call channel. In this example, the call
channel MyCallChannel supports the call interfaces OnOff and
OtherServices. A client process can call the methods

• On()

• Off()

and an association with OtherServices allows the client to call

• Calculate(..)

• other methods prototyped in OtherServices

A call channel supports multiple call interfaces. Each different call
interface allows the separating of different groups of clients to

CallChannel

MyCallChannel

OnOff

CallChannelAccept

+ on() : void
+ off() : void
+ calculate(int x, int y) : int
+ …

+ on() : void
+ off() : void

+ accept(Process p) : int
+ accept(int method, Process p) : int
+ accept(int[] methods, Process p) : int
- join(int method) : void
- fork() : void

<implements>

<implements>

<inherits>

OtherServices

+ calculate(int x, int y) : int
+ …

+ accept(Process p) : int
+ accept(int method, Process p) : int
+ accept(int[] methods, Process p) : int

<implements>

 4. A CSP library for compositional programming of concurrent software

156

communicate via the call channel. A client/server example is illustrated
in Appendix D.2.

4.5 Barriers
A barrier provides a multi-way synchronization point, which may
involve a number (two or more) of processes. Any process synchronizing
on a barrier will be blocked until all processes associated with the barrier
reach that synchronization point. On rendezvous with the
synchronization point, a special communication process could exchange
data between all participating processes. The barrier releases the
participating processes when the communication process has completed.
The barrier can represent a communication event, a bag of events (Smith
et al., 2003), or merged events (Lawrence, 1998).

The theory of Bulk Synchronous Parallelism (BSP) (McColl, 1996)
exclusively makes use of the barrier primitive to determine an optimized
communication/processing trade-off for shared variable models. Roscoe
(1998) notes that the BSP model is appropriate for large computations of
numerical problems; it does not give any insight into the way parallel
systems interact at a low level. CSP can be used to model the
communication process that is performed by the barrier. The barrier, as
proposed in this thesis, provides a process-layering concept. This
process-layering concept allows one to create parallel programs using the
BSP model in one upper layer and the CSP model in a lower layer. The
CSP model implements the barrier.

A barrier is an instance of the Barrier class and it can be set up with an
initial number of associated processes. This is specified as

Barrier barrier = new Barrier(int number);

The synchronization point, at which processes associated with the barrier
must rendezvous, is the point where these processes invoke the sync(..)
method on the barrier.

4.5 Barriers

157

void sync() throws ExceptionSet;

The process will synchronize with all associated processes. Its
implementation is restricted for shared memory systems. The next
sync(..) method can be used for distributed memory systems.

void sync(csp.lang.Process process) throws ExceptionSet;

With this method the processes will synchronize with all associated
processes and the barrier performs the specified process at each side of
the barrier in parallel on rendezvous. process can be part of a network of
processes with data channels that can describe the information exchange
on a distributed system. In the current version of CTJ, a distributed
barrier (i.e. a barrier connected to distributed processes) may not release
all processes at the same time. After termination of process the sync(..)
method releases the associated process. This allows one to create a
distributed barrier with a particular process at each end of the barrier
that communicates on external data channels (or with special link
drivers). The appropriate behaviour of the barrier can be implemented
with CSP concepts. The sync(..) methods will throw an exception set on
error in the barrier.

In Appendix D.3, an example is given which shows two processes that
synchronize two times on a barrier and this illustrates the differences
between sync() and sync(process).

In a dynamic network of processes, the number of associated processes
with a barrier could grow or shrink in time. In this case the number is
unknown and one can specify a barrier without a fixed number, as in

Barrier barrier = new Barrier();

Additional methods allow enrolling and resigning processes with the
barrier at run-time.

void enroll() throws ExceptionSet;

The process will be associated with this barrier. Also, any process that is
associated with the barrier can resign itself from the barrier with

 4. A CSP library for compositional programming of concurrent software

158

void resign() throws ExceptionSet;

If a process is the last process for which the barrier waits to synchronize
and it resigns from the barrier then the barrier completes and releases all
the remaining associated processes. If a process resigns from the barrier
and only one process remains to synchronize on a barrier then the
process must wait for a second process to enrol and synchronize with.
This is because an event can only happen between at least two processes.
Both enroll() and resign() methods can throw an exception set on error
in the barrier. If the barrier was instantiated with constructor Barrier(10)
then the number of processes that must synchronize is 10 and the
methods enroll() and resign() do not alter that number.

4.6 Compositional constructs
In the previous section, the communication relationships (i.e. data
channels, call channels, and barriers) in Java have been discussed.
Processes are also related by compositional relationships. The parallel
relationship was already shown in the examples of Appendices D.1, D.2,
and D.3. The compositional relationships are implemented as
compositional constructs in CTJ. These constructs are discussed in this
section. A compositional construct composes a set of processes as one
process and executes these processes in a particular order. The execution
order is determined by communication and by compositional constructs.

The set of compositional constructs that is supported by CT are:

• Equally-prioritized parallel—the parallel construct

• Unequally-prioritized parallel—the priparallel construct

• Sequential—the sequential construct

• Equally-prioritized choice—the alternative construct

• Unequally-prioritized choice—the prialternative construct

• Exception—the exception construct

4.6 Compositional constructs

159

These constructs are processes themselves and therefore they implement
the Process interface (stereotyped <<process>>). Therefore, these
constructs allow nesting of other compositional constructs. There are a
few processes to which the process interface is implicit. For example, the
switch-case clause and the try-throw-catch clause provided by the
programming language can be used as anonymous processes for an
alternative construct and an exception construct respectively. These
anonymous processes are discussed in Section 4.6.3 and 4.6.4.

4.6.1 The parallel construct

The implementation of the CSP parallel operator in CT is prioritized and
it is divided into

• Equally-prioritized parallel construct

• Unequally-prioritized parallel construct

Equally-prioritized parallel construct

The equally-prioritized parallel construct (parallel or PAR) executes a list
of processes in parallel with equal priorities. A parallel construct is based
on a process instance that is instantiated by the Parallel class, as in

Parallel par = new Parallel(Process[] processes);

The argument processes is an array of processes that begins executing
when the run() method of the parallel construct is invoked,

par.run();

The parallel construct will assign a separate thread of control to each
associated process. Each thread of control will perform the run() method
of the associated processes at the same priority as the main thread of
control that entered the parallel construct.

 4. A CSP library for compositional programming of concurrent software

160

The parallel construct is running when at least one of its associated
processes are running. The parallel construct terminates when all
associated processes have terminated.

The following example shows a parallel composition of three parallel
processes.

Parallel par = new Parallel(new Process[] {

 new Process1(process interface),

 new Process2(process interface),

 new Process3(process interface)

});

par.run();

Listing 4-4 Parallel construct.

The listed processes Process1, Process2, and Process3 will be executed in
parallel when par.run() is invoked. These processes execute with the
same priority as the Parallel process. The par process finishes
successfully when all three of its associated processes have successfully
finished.

The parallel construct supports a few additional public state handling
methods that allow the adding or removing of parallel processes in the
software architecture at run-time. These methods are part of the process
instance interface and they may only be invoked when the parallel
construct is not running. This is similar as for the other compositional
constructs in the next sections.

New processes may be added at run-time, using

par.add(new Process4(..));

or by adding multiple processes at a time:

par.add(new Process[] { new Process4(..), new Process5(..) });

A process may be removed from the process list, using

4.6 Compositional constructs

161

par.remove(process);

Unequally-prioritized parallel construct

The unequally-prioritized parallel construct (priparallel or PRIPAR)
executes a list of processes in parallel with declining (unequally)
priorities. The execution of the first process in the process list is given the
highest priority and the execution of the last process in the process list is
given the lowest priority. These different priorities can improve the
reactivity and responsiveness of the program.

A process itself has no priority. In other words, one cannot assign a
priority number to a process and one cannot ask a process what priority
it has. The priority is given to the thread of control that is encapsulated
within the process. The priparallel construct avoids one using priority
index numbers. Priority indexes are an implementation issue and not a
design issue. Priority indexes have only a meaning in relation to other
priority indexes. Therefore priparallel constructs implement priority
relationships that specify higher, equal, or lower priority between
processes.

The priparallel instance is constructed with

PriParallel pripar = new PriParallel(Process[] processes);

The following example (Listing 4-5) shows a priparallel construct of three
processes.

PriParallel pripar = new PriParallel(new Process[] {

 new Process1(process interface), // priority highest

 new Process2(process interface), // priority next highest

 new Process3(process interface) // priority lowest

});

pripar.run();

Listing 4-5 Priparallel construct.

The processes Process1, Process2, and Process3 will be executed in
parallel with successively lower priorities. Process Process1 has the

 4. A CSP library for compositional programming of concurrent software

162

highest priority. The pripar process finishes successfully when all three
processes have successfully finished.

Unfortunately, it is not always possible to move away from certain
implementation issues. Due to improving the performance and saving
memory, each priparallel construct is limited to 8 priorities; where 7 are
for user defined processes and one is reserved. The reserved priority is
private to the priparallel construct and can be used for an idle task, skip
task, or garbage collector task. The restriction to 8 priorities allows quick
priority sorting with the efficiency of order O(2) , i.e., a process can be
placed into the correct priority queue in a maximum of two steps.
Increasing the maximum number of priorities, i.e., more than 7, is
possible by nesting. The following example, in Listing 4-6, illustrates a
priparallel construct with 49 (=72) priorities.

PriParallel pripar = new PriParallel(new Process[] {

 new PriParallel(new Process[] { // priority 0

 Process1_1(..) // priority 0.0

 Process1_2(..) // priority 0.1

 Process1_3(..) // priority 0.2

 Process1_4(..) // priority 0.3

 Process1_5(..) // priority 0.4

 Process1_6(..) // priority 0.5

 Process1_7(..) // priority 0.6

 }),

 new PriParallel(new Process[] { // priority 1

 Process2_1(..), // priority 1.0

 ... // priority 1.1-5

 Process2_7(..) // priority 1.6

 }),

 new PriParallel(new Process[] {..}), // priority 2.0-2.6

 new PriParallel(new Process[] {..}), // priority 3.0-3.6

 new PriParallel(new Process[] {..}), // priority 4.0-4.6

 new PriParallel(new Process[] {..}), // priority 5.0-5.6

 new PriParallel(new Process[] {..}) // priority 6.0-6.6

});

pripar.run();

Listing 4-6 Example of a nested priparallel construct.

Note that the indexes in the comments show the internal indexing that is
generated by the nested priparallel construct.

4.6 Compositional constructs

163

As with the parallel construct, methods like add(..) and remove(..) exist
and an additional method is added to insert a process at run-time, using

pripar.insert(process, index);

Process process will be inserted at index of the process list. The order of
priorities will automatically be applied to the new process list.

4.6.2 The sequential construct

A sequential construct (SEQ) performs processes in a particular fixed
sequence. The sequential construct is the instance of the Sequential class.
The sequential process instance is created with

Sequential seq = new Sequential(Process[] processes);

The argument processes is an array of processes that begins executing
when the Sequential construct’s run() method is invoked,

seq.run();

When the run() method of a sequential composition construct is invoked
then the associated processes are executed one at a time by the same
thread of control. The sequential construct process terminates when all
associated processes have terminated.

The following example shows a sequential composition of three
processes.

Sequential seq = new Sequential(new Process[] {

 new Process1(process interface),

 new Process2(process interface),

 new Process3(process interface)

});

seq.run();

Listing 4-7 Sequential construct.

 4. A CSP library for compositional programming of concurrent software

164

In this case, Process1 executes to completion first, followed by Process2
and then by Process3. The seq process finishes successfully when
Process3 successfully finishes, i.e. when all three processes have
successfully finished running in order. Sequential processes should not
communicate with each other using (unbuffered) rendezvous channels,
as this would cause deadlock.

Additional to the add(..) and remove(..) methods, a new process can be
inserted at a specific index in the list of processes at run-time, using

seq.insert(process, index);

4.6.3 The alternative construct

Sometimes a choice must be made of one process out of a set of processes
that are simultaneously committed in communication. Sequential
programming languages, like Java, offer if-then-else clauses for making
choices in the flow of control of the program. An if-then-else construct
works for Boolean expressions but not for events, since an event cannot
return true or false. An event occurs or does not. An if-then-else
construct is only suitable for checking for conditions and not for catching
events.

CSP provides a choice operator that allows choosing one process out of
many processes which are ready to engage in the first event. This process
is also called alternative construct. The alternative construct combines a
number of processes guarded by channel inputs, channel outputs and
channel timeouts. The alternation performs the process associated with a
guard which is ready (Roscoe, 1998). This process, to which a guard is
associated, is called a guarded process. A guard is ready when the guarded
process can engage in a first communication event, as the first action of
the process. This is called conditional communication. If no guard is ready,
the alternation will suspend until a guard becomes ready. A suspended
alternative construct consumes no time. As soon as one guard becomes
ready (i.e. an alting process at the other end of one of the channels is
willing to communicate) it will resume the alternative construct followed
by the execution of the guarded process. When the selected guarded

4.6 Compositional constructs

165

process finishes, the execution of the alternative construct finishes as
well.

The implementation of the CSP choice operator in CT is prioritized and is
divided into

• Equally-prioritized alternative construct

• Unequally-prioritized alternative construct

Equally-prioritized alternative construct

The equally-prioritized alternative construct (alternative or ALT) is
instantiated by

Alternative alt = new Alternative(Guard[] guards);

The argument guards is an array of guard objects. A guard is an instance
of the Guard class. There are two ways to create alternative constructs in
CTJ: as a composition-based construct or as a select-based construct.

Composition-based construct

The compositional approach is almost similar to the sequential and
parallel constructs as described in the previous sections. The following
example shows an Alternative composition for three guarded processes.

Alternative alt = new Alternative(new Guard[] {

 new Guard(channel1, new Process1(channel1, ..)),

 new Guard(channel2, new Process2(channel2, ..)),

 new Guard(channel3, new Process3(channel3, ..))

});

alt.run();

Listing 4-8 Composition-based alternative construct.

The alternative process starts by invoking its run() method. Here,
channeli is an input channel or output channel of Processi. The Guard with
Processi is ready when a process at the other end of the channel is
waiting. A guard that becomes ready is then candidate for selection. The

 4. A CSP library for compositional programming of concurrent software

166

alt process waits until at least one guard becomes ready and completes
successfully when one of the ready guards is selected and its respective
guarded process has successfully executed. If more than one guard is
ready then one guard will be randomly selected; theoretically this is a
non-deterministic choice and practically any selection mechanism is
applicable. CT’s alternative construct makes its selections fairly, i.e., when
more than one guard is ready, the guard to execute will be selected
according to a first-come-first-served policy and the process that it
guards will then be executed.

New guards may be added at run-time, using

alt.add(guard);

or by adding multiple guards at a time:

alt.add(new Guard[] { guard1, guard2, ..});

A specific guard may be removed from the guard list, using

alt.remove(guard);

Processes that are specified in a guard can also be written as anonymous
processes, as shown in Listing 4-9.

Integer n = new Integer(); // n is an Object

Process alt = new Alternative(new Guard[] {

 new Guard(inChannel[0], new Process() {

 public void run()

 throws ExceptionSet {

 inChannel[0].read(n);

 ... do something with n

 }

 }),

 new Guard(inChannel[1], new Process() {

 public void run()

 throws ExceptionSet {

 inChannel[1].read(n);

 ... do something with n

 }

 })

});

4.6 Compositional constructs

167

for (int i=0; i<20; i++) {

 alt.run(); // make the selection and run the response

} // 20 times

Listing 4-9 Example of a composition-based alternative construct.

Select-based construct

The select-based alternative construct starts by invoking the select()
method, as with

i = alt.select();

Index i specifies the guard that was selected; i ∈ [0,n-1] and n is the
number of guards. This method does not execute any specified process of
the selected guard. Therefore, guards in a select-based construct do not
specify processes. A switch-case clause can execute guarded processes.
Examples are given in Listing 4-10 and Listing 4-11.

Alternative alt = new Alternative(new Guard[] {

 new Guard(inChannel[0]),

 new Guard(inChannel[1])

});

Integer n = new Integer();

for (int i=0; i<20; i++) {

 int index = alt.select(); // wait for a channel

 inChannel[index].read(n); // read from selected channel

 ... do something with n

}

Listing 4-10 Example of a select-based alternative construct.

In CT, a channel can also play the role of a guard which simplifies the
code. Every object that inherits the Guard class can play the role of a
guard. This can only be used with the select-based alternative construct.

Alternative alt = new Alternative(new Channel[] {

 inChannel[0],

 inChannel[1]

});

 4. A CSP library for compositional programming of concurrent software

168

Integer n = new Integer();

for (int i=0; i<20; i++) {

 int index = alt.select(); // wait for a channel

 switch(index) {

 case 0: inChannel[0].read(n);

 ...

 break;

 case 1: inChannel[1].read(n);

 ...

 break;

 }

 ... do something with n

}

Listing 4-11 Example of a select-based alternative construct with simplified
guards.

For call channels, the following guards exist. A guard that guards a call
channel for a particular method, denoted by constant number
channel.METHOD, is:

Guard guard = new Guard(callchannel, callchannel.METHOD,

 new Process(callchannel,..));

A guard with a range of methods, for example on(), off(), and
calculate(), is specified by

Guard guard = new Guard(callchannel,

 int [] { callchannel.ON, callchannel.OFF,

 callchannel.CALCULATE },

 new Process(callchannel,..));

The guard that accepts any method is specified by

Guard guard = new Guard(callchannel,

 new Process(callchannel,..));

The same guard can be used at a client process or a server process. If the
alting process calls a method on the call channel then this guard will
assume an accept() by the guarded process. If the alting process is

4.6 Compositional constructs

169

accepting on the call channel then this guard will assume a call to
method() by the guarded process.

The call channel callchannel can play the role of a guard, as with data
channels, without specifying the Guard class. Barriers cannot be used as
guards in the alternative construct.

Unconditional and conditional guards

The guard object signals the alternative construct when it becomes ready.
The policy of a guard to become ready can be conditional or
unconditional.

As shown in the previous section, a guard object may be declared as
follows,

Guard guard = new Guard(channel, new Process(channel,..));

The guard becomes true when argument channel is ready. The guard
described above always participates in the alternative construct and is
called an unconditional guard. A guard is a conditional guard when it is
enabled and when some condition is true; otherwise the guard is
disabled and omitted by the alternative construct. A disabled guard will
never be selected.

For example, in Listing 4-12 the variable condition.value represents the
result of a Boolean expression.

Boolean condition = new Boolean(false);

condition.value = (temperature > 30);

Guard guard = new Guard(condition, channel, new Process(channel,..));

Listing 4-12 Example of a conditional guard.

If condition.value is true then the guard will be ready when the specified
channel is ready, otherwise the guard is omitted and the guarded process
will not be selected. The parent process of the alternative construct and
guarded processes may update variable condition.value at any time.

 4. A CSP library for compositional programming of concurrent software

170

A conditional guard is declared as

new Guard(new Boolean(true), channel, new Process(channel,..))

and is equivalent to

new Guard(channel, new Process(channel,..))

Applying conditional guards is useful for implementing a state machine
on communication events in a safe and elegant manner. Similarly,
conditional guards also exist for call channels.

The skip guard allows the alternative constructs to withdraw and
continue when no guard is true. An overview of skip guards is given in
Appendix D.4.1 The timeout guard allows the alternative construct to
withdraw and to continue after the expiration of a specified time when
no guard is true. An overview of timeout guards is given in Appendix
D.4.2.

Unequally-prioritized alternative construct

The unequally-prioritized alternative construct (prialternative or
PRIALT) is similar to the alternative construct and is created by the
PriAlternative class. The PriAlternative class extends the Alternative
class and overrides the equally-prioritized choice mechanism with a
unequally-prioritized choice mechanism. The prialternative construct is
instantiated with

PriAlternative prialt = new PriAlternative(Guard[] guards);

The prialt process waits until at least one guard becomes ready and
finishes successfully when one of the three guarded processes is selected
and has successfully executed. The Guard with Processi may be selected
when channeli is ready. Here, channeli is an input channel or output
channel of Processi. If more than one guard is ready than the guard with
the lowest index will be selected and the guarded process of the selected
guard will be executed.

4.6 Compositional constructs

171

As with the alternative construct, methods like add(..) and remove(..)
exist and an additional method is added to insert a process at run-time,
using

prialt.insert(guard, index);

Guard guard will be inserted at index in the guard list. The order of
priorities will automatically be applied to the new guard list.

4.6.4 The exception handling construct

Reliable software should deal with all situations in the environment,
which have an effect on the behaviour of the software. Unusual
situations can cause exceptional occurrences or exceptional states in software
which, when unhandled, can cause an undesirable behaviour of the
program. The exception manifests an error. Exceptions should be
handled by a proper design concept that deals with its complexities, such
as compositionality and state explosions. On the occurrence of an
exception, it requires switching from the main process to the exception
handling process. The exception handling process is called an exception
handler. The main process is not concerned with exception handling. A
proposed CSP-based exception handling construct is discussed in this
section.

The exception mechanism

Exceptions are events and states of disruption of the current flow of
control that occur at a particular time and space. Exceptions are observed
by two behaviours:

• An exception as an unsuccessful termination. An illegal state in
a process can be seen as an exception from which point the
process should stop continuing, like division by zero or a
temperature value being out of range. In case of an exception,
the process must abort its actions. In other words, the process
must terminate unsuccessfully. The exception operator will

 4. A CSP library for compositional programming of concurrent software

172

capture the unsuccessful termination of a process and preempts
to the exception handling process.

• An exception as an interrupt. Channels or barriers that are in
exception prevent communication events. Processes that are
willing to engage in communication events, on so-called
corrupted channels or corrupted barriers, should escape from
blocking forever. In this case, exceptions are a gloss on channels
or barriers. In case a higher-priority process is waiting for a
channel or barrier that becomes corrupt, the higher-priority
process will preempt the running lower-priority process in
order to terminate unsuccessfully. The exception will cause an
interrupt of the running lower-priority process.

The exception construct has been developed in CT in such a way that it
goes with the other compositional constructs. The exception construct
fulfils several desirable properties:

1. The exception construct is derived from a theoretical model of an
exception operator described in the CSP language (see Appendix
C). The exception operator is simple enough and no changes to
the semantics of the other CSP operators are required. The
exception operator can be used for formal model checking and for
reasoning about the behaviour of exception handling.

2. This version of the exception operator abstracts away from
exception types.

3. The CT implementation of the exception handling should fulfil
the semantics of the theoretical exception operator and
encompasses exception types on which the exception handler can
make decisions.

4. The exception handling concept is lightweight and thread-safe.

5. This exception mechanism implements the termination model of
exception handling (Burns and Wellings, 1990). In the termination
model, control never returns to the point in the program
execution where the exception was thrown. The mechanism does
not implement the resumption model of exception handling (Burns

4.6 Compositional constructs

173

and Wellings, 1990). The resumption model allows an exception
handler to correct the exception and then return to the point
where the exception was thrown. Error recovery is often not
possible, or difficult to realize, with acceptable overhead costs.

The exception mechanism collects the exceptions of each parallel
construct. All compositional constructs contribute to this mechanism. The
exception set will be passed (thrown) back to the caller of the process
(construct), i.e. up the hierarchy of processes. At the level of the
exception constructs, the exception set is caught and the set is available to
the exception handler. The handled exception must be removed from the
set by the exception handler. The set of remaining unhandled exceptions
must be thrown by the exception handler so that it can be intercepted by
another handler.

The exception operator requires an exception set which contains
individual exceptions that occurred in concurrent processes at run-time.
In CT, the exception set is an instance of the ExceptionSet class. The
ExceptionSet object collects the exceptions that occurred in the process
and its child processes. Thus a process throws an ExceptionSet object on
exception, see the process interface in Section 4.3. Each sequential
construct has its own ExceptionSet object and thus an ExceptionSet object
exists for every branch at the parallel and priparallel constructs.

Errors can also occur in a channel, e.g. a hardware failure occurs in the
system. Those errors which cannot be repaired by the channel must be
thrown as exceptions. The exception handler should deal with one or
more exceptions and therefore the exception set is important. Each
exception must be collected in the exception set. The throw keyword in
Java allows for throwing single exceptions and this is not according to
the proposed theoretical model. Therefore, the throwExceptionSet method
should be used instead of throw. The throwExceptionSet method appends
the specified exception to the exception set. The exception set is a system
attribute per sequential construct. Successively, the exception set is
thrown by the method. For example, the channel (or link driver) can
throw an IOException with

 4. A CSP library for compositional programming of concurrent software

174

System.throwExceptionSet(new IOException(“cable failure”));

The specified IOException will be appended to the exception set and the
exception set will be thrown to the invoking processes using the Java
throw statement. The exception construct or the Java try-throw-catch
clause must be used to catch the exception set. Three static
throwExceptionSet methods are provided by the System class.

The method

System.throwExceptionSet(Exception exception)

adds the specified exception to the exception set and throws the
exception set instead of the exception.

Similarly, the method

System.throwExceptionSet(Exception[] exceptions)

adds multiple exceptions to the exception set when more than one
exception occurred at the same instance of time. If the throwExceptionSet
method specifies an exception object that is already in the set then the
exception object will be omitted and the set will be thrown.

If the exception handling process does not deal with all exceptions then
the handler must pass the remaining exception set to the next exception
construct using

System.throwExceptionSet()

If the exception set is empty then this method will not throw the
exception set but will return instead.

The exception handling process can get the exception set of the current
thread of control with

ExceptionSet es = System.getExceptionSet()

The ExceptionSet class offers a small set of public methods for the
exception handling process. The exception handling process can use the
iterator (of type ExceptionIterator), provided by ExceptionSet, to wander

4.6 Compositional constructs

175

through the exception elements and deal with the individual exceptions.
When the exception is handled, it should be marked as handled using the
handled() method.

An exception construct is defined by the ExceptionCatch class and can be
instantiated with

ExceptionCatch exc = new ExceptionCatch (new P(), new E());

This process performs process P and it switched to exception handler E
on exception in P, according to the semantics of P EΔ (Section 3.6.5 and
Appendix C). As with any other process this construct can be executed
with

exc.run();

This process encapsulates the try-throw-catch construct and allows
nesting with other compositional constructs. An example of exception
handler E is illustrated in Listing 4-13.

import csp.lang.*;

import csp.lang.Process;

public class E implements Process

{

 public E() { ... }

 public void run()

 throws ExceptionSet {

 ExceptionSet es = System.getExceptionSet()

 for (ExceptionIterator i = es.iterator(); i.hasNext();) {

 Exception e = i.next();

 ... handle exception

 i.handled();

 }

 System.throwExceptionSet();

 }

}

Listing 4-13 Exception handler process class.

Java supports a language-based exception mechanism that implements
the termination model of exception handling. The three keywords for

 4. A CSP library for compositional programming of concurrent software

176

exception handling in Java are try, throw, and catch (Arnold et al., 2000).
This is similar for C++. A method can throw a single exception-object up
the hierarchy until a try-catch clause catches the exception. This try-
throw-catch mechanism is usually fast and it can implement the
proposed exception mechanism in an efficient way. This try-throw-catch
mechanism has similarities with the proposed exception handling
mechanism. See the example in Listing 4-14. The exception will be
removed from the exception set es. If the exception set is not empty then
the exception set will be thrown further upwards; otherwise the
exception handler terminates. The try-throw-catch construct is a fixed
construct and not truly compositional.

try {

 ... perform process -- process P

} catch (ExceptionSet es) {

 for (ExceptionIterator i = es.iterator(); i.hasNext();) {

 Exception e = i.next();

 ... handle exception

 i.handled();

 }

 System.throwExceptionSet();

 }

Listing 4-14 Example of a try-throw-catch clause with exception handling.

Exceptions and sequential construct

A sequential process that cannot engage in a communication event on a
corrupt channel or corrupt barrier, is in exception. The channel or barrier
will throw an exception and the sequential construct will unsuccessfully
terminate. The exception is added to the exception set.

Exceptions and parallel construct

A parallel construct terminates when all parallel processes terminate
whether or not they terminate successfully or unsuccessfully. The
parallel construct terminates unsuccessfully when the exception set is not
empty and the exception set is thrown. In other words, if one of the
parallel processes in the parallel construct terminates unsuccessfully then

4.6 Compositional constructs

177

the parallel construct also terminates unsuccessfully. The parallel
construct collects all exceptions that occurred in the parallel processes
and the construct will throw the exception set on termination.

Exceptions and alternative construct

The alternative construct will terminate unsuccessfully when one or
more channels in the guards are in exception. In this case the alternative
construct cannot make a fair selection. The alternative construct will
collect all exceptions in the exception set. Of course, the alternative
construct will throw all exceptions that occurred in the guarded process
it executes. This implies that when a guarded process unsuccessfully
terminates then the alternative construct also unsuccessfully terminates.

Exceptions and priparallel construct

The mechanism is similar to the parallel construct. The exception
handling at a higher priority can perform preemption of processes
executing at lower priority. This preemption happens only when a
process at a higher priority is invoking on a channel or barrier that is
corrupt, or when the process is waiting for a channel or barrier that
becomes corrupt (refused by the environment).

Exceptions and prialternative construct

The mechanism is identical to the alternative construct.

Exceptions and exception construct

The exception handler can throw a new exception, can pass unhandled
exceptions, and can remove exceptions from the set that are handled by
the handler. If the exception handler terminates unsuccessfully then the
exception construct terminates unsuccessfully.

 4. A CSP library for compositional programming of concurrent software

178

Other applications

The exception construct can be used for things other than handling
errors. For example, if processes must quit their tasks then the channels
they use can be poisoned and these processes will terminate on reading
and writing on poisoned channels. See the System.refuse(..) method in
Section 4.7.2 .

4.6.5 Nested compositional constructs

The Sequential, Parallel, PriParallel, Alternative, PriAlternative, and
Exception are compositional processes that may be nested (composed)
within other compositional processes. Here, compositional programming
is illustrated by an arbitrary example, see Listing 4-15. A single run()
invocation starts the composition. At declaration of the construct, the
initial state is set before the run() method is invoked. This makes the
execution of the composition efficient.

Process process = new Exception(

 new Sequential(new Process[] {

 new Parallel(new Process[] {

 new Process1(..),

 new Process2(..)

 }),

 new Alternative(new Guard[] {

 new Guard(channel1, new Process3(channel1, ..)),

 new Guard(channel2, new Process4(channel2, ..))

 new PriAlternative(new Guard[]

 new Guard(channel4,

 new Sequential(new Process[] {

 new Process5(channel4, ..),

 new Process6(..)

 })),

 new Guard(channel5,

 new Sequential(new Process[] {

 new Process7(channel5, ..),

 new Process8(..)

 })),

 }),

 new Parallel(new Process[] {

 new Process9(..),

4.7 Timing and Sampling

179

 new Process10(..)

 })

 }),

 new Process {

 public void run() {

 ... exception handling process

 }

 }

);

process.run();

Listing 4-15 Example of a nested construct with alternative construct.

This example shows that the alternative construct can play the role of a
process or the role of a guard.

4.7 Timing and Sampling
Control theory assumes a constant sampling period between successive
inputs (sampling) and outputs (actuation) and the outputs should be
calculated before the end of the sampling interval. Variations of the
sampling interval can degrade the performance of the controlled system
and even lead to instability of the system. This is called jitter, which is
defined as the variation of a point in time around a reference point in
time. Jitter should also be prevented between the multiple inputs that are
supposed to be sampled at a predefined reference point in time. This is
similar with multiple outputs.

In control software, sampling and actuation should be independent from
priority-based preemptive scheduling methods. Preemption causes
variations in process execution. Timed threads are provided by operating
systems for creating timely activated tasks or timed processes. Even
when timed processes operate at the highest priority there is no
guarantee of jitter-free behaviour when interrupts can preempt timed
processes at any time. Therefore, sampling and actuation should not be
performed by timed processes. Timed threads and timed processes are
inadequate solutions for hard real-time control software.

 4. A CSP library for compositional programming of concurrent software

180

The CSP paradigm offers a solution that is conceptually clean and
without surprises. Sampling and actuation are timed events that are
related to channel communication between the controller and the plant.
Therefore, channels are concerned with sampling and actuation. This
section introduces timed communication events.

4.7.1 Timed communication events

Timed communication events have been proposed in (Hilderink and
Broenink, 2003). This proposal allows for a conceptual approach that
incorporates timing on channels and barriers. The concept specifies that
the environment may engage in communication events on a permanent
or timely basis.

Time is part of the environment. Therefore, CT provides some methods
or system services that can be used to command the environment, say the
environmental process, to accept or refuse communication events on
channels or barriers, on a permanent or timely basis. This results in timed
communication events or exceptions when the timing requirements are
not met.

The hard real-time timer and the associated interrupt service routine are
part of the environment of the program. The environmental process can
assign channels or barriers to the timed interrupt service routine and
programs the timer. On the interrupt, the environmental process will
engage in the communication event and at that moment communication
takes place. The interrupt service will execute the link driver of the data
channel, which performs sampling or actuation, at precise moments in
time. Barrier and call channels do not provide link drivers and they will
be released at the instance of time.

This proposed concept offers,

• atomic, accurate, and high-performance sampling and actuation,

• notion of time to untimed CSP,

• separation of concerns increases the reusability of processes,

4.7 Timing and Sampling

181

• exception handling on crossing hard deadlines.

If necessary, on the basis of timed communication events one can also
create timed processes.

4.7.2 System services

The following methods are services that can be carried out by the
environmental process. These methods are called by the control
application and they are served by the environmental process when the
environmental process is willing to accept the method call. The
csp.lang.System class provides a global static call channel whose service
can be invoked by any process at any time. These services are used by
network builders which setup the timing on the created network of
communication processes.

Accept communication event at specified time

System.at(channel, time); // single-shot

System.at(channel, time, interval_time); // periodical

The producer and consumer processes must be willing to communicate
on the specified channel or barrier, before the environmental process is
willing to accept the communication event at the specified time (in
microseconds) or period. If this is not the case and the processes engage
in the event after the specified time expires then the real-time
requirement has not been met. In this case, any blocked process will be
released and a RealTimeException exception is thrown at the producer
and at the consumer. The first at(..) method specifies a single deadline
and the second method specifies periodical deadlines.

System.at(barrier, time); // single-shot

System.at(barrier, time, interval_time); // periodical

The environmental process will participate in the barrier synchronization
and will commit to the synchronization at the specified time. If one
participant does not sync before the environmental process then

 4. A CSP library for compositional programming of concurrent software

182

RealTimeException exceptions will be thrown to all processes and all
processes will be released. Hence, the real-time requirement has not been
met.

Accept communication event after specified time

System.after(channel, time); // single-shot

System.after(channel, time, interval_time); // periodical

The communication between the producer and consumer processes will
be delayed until the specified time. Any communication after the
specified time will be accepted and they both immediately continue. No
exceptions are thrown. If an interval time is specified then the next
waiting time will be incremented with the interval time.

System.after(barrier, time); // single-shot

System.after(barrier, time, interval_time); // periodical

The environmental process will participate in the barrier synchronization
and will commit to the synchronization at the specified time. No
exceptions are thrown. If an interval time is specified then the next
waiting time will be incremented with the interval time.

System.after(guard, time); // single-shot

System.after(guard, time, interval_time); // periodical

If the alternative construct is waiting and the alting process at the other
end is willing to communicate before the specified time then the guard
will become ready at the specified time. This guard is called a timed
guard. No exceptions are thrown. A timed skip guard is used for
specifying a timeout-guard. The skip guard will be ready at the specified
time and no exceptions are thrown at timeout. As with channels and
barriers, the guard can be periodically timed. The specified interval time
increments time each period. Since guards are local to a process, this
implies that after(guard,time,..) is locally used and no other process
can alter time on a local guard.

4.7 Timing and Sampling

183

The timed guard can be used with at(..) and after(..). For example,
the method after(guard,time1,..), with channel being part of guard, can
be used with at(channel,time2,..) or with after(channel,time2,..). The
method after(guard,time1,..) could endanger the deadline, as specified
by at(channel,time2,..) when time1 > time2. In this case, the hard
deadline will not be met and an exception may occur. Although this is a
valid behaviour, this combination is not very useful and should be
avoided.

The timing on a channel or barrier stops when accept(..) or refuse(..)
are used on the channel or barrier.

Refuse communication and (optionally) throw exception

System.refuse(channel, exception_message);

System.refuse(barrier, exception_message);

This method will let the environmental process refuse the acceptance of
the communication event on the specified channel or barrier. If an
exception message is specified then it will let the channel or barrier
throw the exception message to the participating processes. If no
exception message is specified then the channel or barrier will block the
invoking processes until the environment is willing to accept the events.

The refuse(..) method can be used to command the environment that an
artificial refusal should be carried out. This method can be used for two
main reasons:

1. The application can be tested by deliberately refusing
communication. This way the robustness of the application can be
tested.

2. In case the application deadlocks or livelocks then there is no way
the program or a particular part of the program can terminate. In
case the program deadlocks or livelocks, refuse(..) can be used
to let channels or barriers throw exceptions. The exceptions will
release synchronization and exception handling may gracefully

 4. A CSP library for compositional programming of concurrent software

184

terminate the program. This is called poisoning a channel or a
barrier (Section 3.5.1 and Appendix C.4).

A UnacceptableException results if the environmental process cannot
refuse events on the specified channel or barrier.

Accept communication

System.accept(channel);

System.accept(barrier);

The environmental process will accept any communication event on the
specified channel or barrier. This will cancel any timing, as specified with
at(..) or after(..), or any refusal that was specified with refuse(..). If
a channel or barrier that was refused cannot be accepted then an
UnacceptableException exception is thrown. The method will be ignored
and returns when it was called before at(..), after(..), or refuse(..).

Get the actual time

long System.time();

Returns the absolute time read by the environmental timer.

4.7.3 Thread services

The csp.lang.Thread class in CTJ can delay the thread of control for a
specified duration of time. The services offered by the csp.lang.Thread
class are thread-oriented and therefore local to the process. This service
does not involve channels or barriers.

Thread.sleep(relative_time);

Let the thread of control in a process sleep for the specified relative time.

4.7 Timing and Sampling

185

Thread.sleepUntil(absolute_time);

Let the thread of control in a process sleep until the specified absolute
time.

4.7.4 Example real-time timing

In this Section, an example illustrates real-time sampling and actuation
that are based on timed channels.

Consider the two controller processes HController and LController as
depicted in Figure 4-7.

Figure 4-7 Control application consisting of a higher-priority
controller process and a lower-priority controller
process.

The external channels d1 and d2 are timed on sample interval Ts1 and
external channels c1, c2 and c3 on sample interval Ts2. The start time ts is
some delay after which the program is completely instantiated. In the
following code we create the external channels and assign them to the
environmental process with specified start time and sampling interval.
The sampling rate for HController is 1 kHz and the sampling rate for
LController is 0.1 kHz. The start time is specified such that sampling

LController

c1@ts,Ts2 c2@ts,Ts2 c3@ts,Ts

HController

d1@ts,Ts1 d2@ts,Ts1

LController HController

(a) Communication relationships

(b) Compositional relationships

 4. A CSP library for compositional programming of concurrent software

186

starts when everything is constructed, otherwise deadlines may be
passed on start-up.

//--- create external channels

Channel_of_Integer d1 = new ADC(0);

Channel_of_Integer d2 = new DAC(0);

Channel_of_Integer c1 = new ADC(1);

Channel_of_Integer c2 = new IncCounter(0);

Channel_of_Integer c3 = new DAC(1);

//--- set up sampling timing and register channels to environment

long Ts1 = 1000; // in usec

long Ts2 = 10000; // in usec

long ts = System.time() + 100000; // start time

// firstly the inputs

System.at(d1, ts, Ts1);

System.at(c1, ts, Ts2);

System.at(c2, ts, Ts2);

// secondly the outputs

System.at(d2, ts, Ts1);

System.at(c3, ts, Ts2);

//--- create processes and compositional relationships

...

Listing 4-16 Creating timed-events using external channels.

Although processes can read and write on these channels in parallel, the
actual conversions will be performed in some atomic sequence by the
timed interrupt service routine.

Every registration with the same start time and sampling interval belong
to the same atomic group and its order of execution is determined by the
sequence of registration. See the sequence of at(..) statements in Listing
4-16. The sequence of inputs and outputs will be sorted by its time stamp
and when the time stamps are equal then the sequence is determined by
the sequence of registration. Due to this constraint, the programmer can
minimize conversion latencies by choosing an optimal order of
registration. The implementation is omitted in this thesis. The link driver

4.7 Timing and Sampling

187

framework takes care of sequencing on a timer interrupt. Link drivers act
as interrupt handlers.

This mechanism is illustrated using CSP diagrams, as depicted in Figure
4-8 and in Figure 4-9. Figure 4-8 shows the communication relationships
of both controllers with their input-output counterparts in hardware (the
input/output bubbles in the grey rectangle).

Figure 4-8 Controllers communicating with devices.

In Figure 4-9a-c, the compositional relationships between these hardware
inputs/outputs are rendered for different scenarios. This is the solution
for using interrupt handling on the internal timer. Process LController
has a lower sampling frequency (1/Ts2) than the sampling frequency
(1/Ts1) of process HController, with Ts1 < Ts2. Thus, we specify that
LController gets a lower priority than HController.

The conversions are atomically performed by the devices. That is, they
cannot be interrupted by the application. This is depicted by the atomic
rectangles in grey. Processor interrupt mechanisms are sequential and
mostly priority-based or preemption-based. This is depicted by the
sequential relationship. The prioritized parallel relationship between the
hardware processes and the software processes are enforced by this
environment.

HControl

d1@ts,Ts1 d2@ts,Ts1

LControl

c1@ts,Ts2 c2@ts,Ts2 c3@ts,Ts2

! ? ? ! !

Processes in hardware (environment)

 4. A CSP library for compositional programming of concurrent software

188

Figure 4-9 Atomic sequence of inputs and outputs by the
environmental process.

This mechanism adapts to three scenarios, where:

t = n.Ts1 = m.Ts2 ⇔ n.Ts1 = m.Ts2

t = n.Ts1 and t ≠ m.Ts2 ⇒ n.Ts1 ≠ m.Ts2

t = m.Ts2 and t ≠ n.Ts1 ⇒ n.Ts1 ≠ m.Ts2

with variable t being the actual time and m,n ∈ [0,1,2,3,..] and Ts1 ≠ Ts2.

(a) Compositional relationships on t = n.Ts1 = m.Ts2.

(b) Compositional relationships on t= n.Ts1 and t ≠ m.Ts2.

HController LController

! ?

Processes in hardware (environment)
atomic

(c) Compositional relationships on t ≠ n.Ts2 and t = m.Ts2.

HController LController

? ! !

Processes in hardware (environment)
atomic

HController LController

! ? !

Processes in hardware (environment)

2

atomic

! ?

4.7 Timing and Sampling

189

Scenario 1: Figure 4-9a shows the scenario of two equal time stamps,
namely n.Ts1=m.Ts2. Sampling and actuation are performed in a
predefined sequence; the sampling and activation for HController is
performed before the sampling and activation for LController. The
sampling and activation of the HController has a low-pass character that
will ensure that c1 and c2 are not influenced by d2. Furthermore, the delay
between the first sampling and the last actuation is usually constant and
small enough so that this does not affect the stability of the controlled
system. A timing scheme is depicted in Figure 4-10.

Figure 4-10 Timing scheme for HController and LController.

Scenario 2: Figure 4-9b shows the situation when only time stamp ts1 is
reached. A timing scheme is depicted in Figure 4-11.

Figure 4-11 Timing scheme for HController.

Scenario 3: Figure 4-9c shows the situation when only time stamp ts2 is
reached. A timing scheme is depicted in Figure 4-12. However, in
practice, Scenario 3 will never occur when frequencies are multiplicities.

ti

HController

d1 d2 d1 d2

ti+1

ti

H+LController

d1 d2 c1 c2 c3

ti+1

d1 d2 c1 c2 c3

∆T

 4. A CSP library for compositional programming of concurrent software

190

Figure 4-12 Timing scheme for LController.

In case all three scenarios are applied then there will be small variations
(jitter) between the input and output conversions. In Figure 4-10, input d1
is converted at ti and c1 at ti+∆T. In scenario 3, input c1 is converted at ti
which is earlier than in scenario 1. Similar variations happen between the
output conversions. These variations are very small compared to the
timing interval. Since the parameters of a controller are a function of
time, these variations may cause inaccurate values of the parameters. In
case this has a significant and wrong effect on the behaviour of the
controller (e.g. instability), one can choose scenario 1. In scenario 1, all
conversions are performed at the highest frequency and variations are
eliminated. Buffered processes are required to decouple the inputs and
outputs from lower-frequent controllers. This scenario is depicted in
Figure 4-13.

Figure 4-13 Controllers communicating at different frequencies but
with the same sampling and actuation frequency.

HControl

d1@ts,Ts1 d2@ts,Ts1

LControl

e1@ts,Ts1 e2@ts,Ts1 e3@ts,Ts1

! ? ? ! !

Processes in hardware (environment)

B1 B2 B3

c1@ts,Ts2 c2@ts,Ts2 c3@ts,Ts2

ti

LController

c1 c2 c3 c1 c2 c3

ti+1

4.8 Conclusions

191

In this example, ts is the start time for the timer to start. The buffered
processes B1 and B2 are sub-sampling and buffered process B3 is super-
sampling. Here, e1, e2, and e3 are additional timed channels required for
sample interval Ts1. Ts2 is a multiplicity of Ts1.

4.8 Conclusions
The CT library offers a set of process-oriented design patterns or
constructs for implementing concurrent software with object-oriented
programming languages. These constructs allow true compositional
programming of reactive software.

The semantics of the proposed constructs are the building-blocks on
which the user can build reliable and reasonable concurrent software.
The concept of reasoning in terms of processes, channels, and barriers
provide a logical separation of hardware dependent and hardware
independent concerns. Multithreading is freed from the mind set of the
user.

The proposed constructs provide a systematic way of handling
exceptions and timing in concurrent programs. The proposed solutions
to timed events (i.e. timed channels and timed barriers) are more
accurate than timed processes and this solution is useful for sampling
and actuation in control systems.

The aspects simplicity, portability, and generality are demonstrated in
Chapter 6. See conclusions in Section 6.7.

C H A P T E R 5

Notion of priorities
5 Notion of priorities

5.1 Introduction
Priority is meant as a solution for optimizing program execution in order
to increase its reactivity and responsiveness. Priority specifies the
importance or urgency between tasks concerning a shared resource to
which some kind of precedence rule is applied. The precedence rule
determines which task can precede the other task, since no two tasks can
or are allowed to perform on the shared resource at the same time. At a
low level of abstraction—devoted to the CPU and its threads of control,
priority is seen as a scheduling parameter used by a scheduler. At a high
level of abstraction—appropriate for the human mind—priority is an
urgency or priority relationship between two event handling processes.
This notion of priorities for the CT object model (Chapter 4) is defined in
this chapter. The precedence rules are defined for the communication
relationships in presence of compositional constructs. In order to get
some trust in the efficiency of the CT libraries (Chapter 4 and 6) and CSP
diagrams (Chapter 3), the scheduling policy is specified in this chapter.
The implementation of the scheduler is not treated.

The notion of priority relationships is discussed in Section 5.2. The
scheduling policies of the equally-prioritized and unequally-prioritized
parallel constructs are described in Section 5.3. Particular patterns of
compositions and communications between processes can result in
inefficiency problems such as the priority inversion problem (Lauer and

 5. Notion of priorities

194

Satterwaite, 1979; Sha et al., 1990), is discussed in Section 5.4. The channel
communication is burdened with the task to solve these problems in a
way that determines the quality of service. This affects the scheduling of
the communication primitives as described in Section 5.5. CT implements
enhanced alternative constructs, which improves the performance of
concurrent software with respect to fairness and real-time requirements.
Alting with notion of priorities is discussed in Section 5.6. Its efficiency is
briefly discussed in Section 5.7. Although output guards are forbidden in
occam for safety and implementation reasons, CSP allows output guards
and so does CT. Output guards are discussed in Section 5.8. Conclusions
to this chapter are drawn in Section 5.9.

The occam programming language (Inmos, 1988) is used to illustrate the
listings, rather than using CTJ. Occam uses abbreviations for the
compositional constructs, which keep the listings compact. The
sequential construct is abbreviated as SEQ, the equally-prioritized
parallel construct as PAR, the unequally-prioritized parallel construct as
PRIPAR, the equally-prioritized alternative construct as ALT, and the
unequally-prioritized alternative construct as PRIALT.

5.2 Priority relationship
In real-time systems, sporadic and periodic processes must be scheduled
on a single CPU in order to meet their specific deadlines. Periodic
processes in embedded systems may involve control loops, data
acquisition, signal generation, etc. Sporadic processes may involve
emergency buttons, safety switches, user interaction, etc. In any case, the
process architecture as well as the run-time scheduling mechanism must
be harmonized so that the total scheduling policy is able to guarantee
that every deadline is met. Priorities are used to specify the scheduling of
processes that are involved with some shared resource; e.g. a single CPU.
More precisely, the threads of control within processes are scheduled.
Processes do not know that they are scheduled.

5.2 Priority relationship

195

Priority is defined as follows:

Definition (priority): Priority is a relationship between two or more
processes that defines a precedence rule that determines which process
has the permission to claim a shared resource at run-time.

Priority concerns the simultaneous use of a shared resource and the
precedence rule only applies when a shared but exclusively used
resource is involved. A shared resource can be a channel, a device, an
object, memory, critical region, or a single processor. The precedence rule
may require certain parameters, such as an index or time. These
parameters concern the scheduling mechanism but they do not directly
concern the user. Instead, the user is concerned with the fairness and
unfairness of the system.

Priorities indicate the relationship of importance between processes—the
importance of one process is greater-than, lower-than, or equal-to another
process in the process architecture. The difference or equality of
importance between processes is called the priority relationship. Priorities
are relevant when processes engage in events. Therefore, the
interrelationships between processes specify the priorities and apply
precedence rules in process architectures. Consequently, the
communication and compositional relationships are priority
relationships that compose the total priority policy of process
architectures. The prefix PRI as in PRIPAR and PRALT or the arrow on
top of the interrelationships and , specify priority relationships to
which the scheduling policy will adapt in the process architecture. A
priority relationship between processes can be fixed or preferred. The
latter may change in time when the context changes.

Processes and events are unaware of their priorities and priorities are
encapsulated in the execution of processes. Priorities are related to event
handling. Event handling is the task that is executed by a process upon an
event. Priorities may propagate via events from event handling to event
handling. Communication and termination events perform the
precedence rules.

 5. Notion of priorities

196

5.3 Equally- and unequally-prioritized
parallel constructs

Real-time processes cannot meet their deadlines when they have to wait
for lesser-urgent processes to complete for which the total processing
time exceeds the maximal CPU time. The lesser-urgent processes must
not consume more processor time than actually necessary. Ultimately,
there should be enough CPU time for remaining non-real-time processes
to meet their requirements. The equally- and unequally-prioritized
parallel relationships are used to specify the priorities of execution in
process architectures.

Commonly, multithreaded programming interfaces consider priority as
an index that can be assigned to each thread of control. A common policy
in many operating systems is the lower the index, the higher the priority.
Often, index 0 is the highest priority. The comparison between indexes
expresses the priority relationship between the threads of control. Such
explicit indexing of priorities has a global and absolute character.
Consequently, the user must determine the absolute index values by
global knowledge. The CSP constructs in this thesis abstract away from
priority indexing and compose relative priority relationships between
pairs of processes. The PAR and PRIPAR constructs assign separate
threads of control with respectively equal and different priorities to its
child processes. These priorities are relative between pairs of processes
and local to the parent process. The PRIPAR is like a PAR construct with
the additional property that the PRIPAR executes its child processes with
declining priorities. The process on top of the process list gets the highest
priority of all processes in the list. The highest priority is equal to the
priority of which the parent process is executing. An example of
declining priority relationships is given by the PRIPAR composition in
Listing 5-1.

 PRIPAR

 Process1 -- priority 0

 Process2 -- priority 1

 PRIPAR -- priority 2

 Process3 -- priority 2.0

5.3 Equally- and unequally-prioritized parallel constructs

197

 Process4 -- priority 2.1

 Process5 -- priority 3

Listing 5-1 A nested PRIPAR construct.

The PAR performs non-preemptive scheduling between competitive
parallel processes. The PRIPAR performs preemptive scheduling. Non-
preemption allows scheduling to another process when the current
process blocks or terminates. Preemption occurs on external
communication events and lets a higher-priority process takes
precedence over a lower-priority process. The lower-priority process can
continue when the higher-priority processes have terminated or are
blocked on communication. A composition of PAR and PRIPAR provides
a composition between non-preemptive and preemptive scheduling that
is optimal for the process architecture. With optimal is meant that
context-switching is only performed when essentially required.
Therefore, time-slicing is not part of the scheduling policy, but time-
slicing can be built by the following construct in Listing 5-2.

PRIPAR

 Timeslicer(time) -- priority 0

 PAR -- priority 1

 Process1 -- priority 1

 Process2 -- pritoriy 1

Listing 5-2 Time-slicing construct.

The Timeslicer process contains a simple infinite WHILE loop with a
sleep statement. The process repeatedly sleeps for the specified time and
sleeps again after the time has expired. Each time the Timeslicer wakes
up it will preempt the PAR construct and when the Timeslicer sleeps
again it will reschedule the next process in the PAR construct. The PAR will
alternately schedule its processes in a round-robin fashion—this is fair.

The PRIPAR construct provides fixed-priority scheduling and is used to
implement a rate-monotonic (RM) scheduling scheme (Sha et al., 1990).
This scheme assigns priority to the execution of processes based on their
periods. The rate is the inverse of the period; the shorter the period, the
higher the priority. Rate-monotonic scheduling is common for control
systems and many other classes of real-time systems. The priority

 5. Notion of priorities

198

assignment is simple and its implementation is lightweight compared to
dynamic-priority scheduling schemes, such as an early deadline first (EDF)
scheduling scheme (Sha et al., 1990). Generally, control applications can
be optimal scheduled using rate-monotonic scheduling and do not
require a dynamic-priority scheduling scheme.

The priority relationships of Listing 5-1 are graphically depicted in a CSP
diagram in Figure 5-1.

Figure 5-1 Example of a composition diagram of a nested PRIPAR construct.

The precedence rules, as specified by these unequally-prioritized parallel
relationships in this composition diagram, are applied on each
communication event and termination event within this system.
Preemption of lower-priority processes happens when a higher-priority
process can proceed upon an event from an external channel or an
external barrier.

In composition diagrams (as in Figure 5-1) and in occam (as in Listing
5-1) the priority relationships between processes are static. In CT, priority
relationships can change at run-time by moving processes in the list of
processes in the PRIPAR construct. See the methods add(..) and
remove(..) in Section 4.6.1. For every change in the unequally-prioritized
parallel relationship a separate composition diagram is required to
express each change.

5.4 The priority inversion problem
Section 4.5.1 illustrates a technique to determine whether or not a process
architecture is priority conflict-free. A priority conflict can increase the

P1 P2

P5

P3 P4

5.4 The priority inversion problem

199

performance of lower-priority processes at the cost of the performance of
high-priority processes. This is known as the priority inversion problem
(Sha et al., 1990). Sometimes a priority conflict seems to be inevitable. The
solution offered here is a design refinement, which results in priority
conflict-free designs. It deals with eliminating the source of the problem
rather than fixing the problem by makeshift solutions.

Figure 5-2 (a) priority inversion problem in design,
(b) priority analysis shows priority conflict design,
(c) priority inheritance in design,
(d) priority analysis shows priority conflict-free design.

Figure 5-2a illustrates an example of a priority inversion problem with
processes and a channel c. Should a high-priority process (P1) be blocked
on a channel, waiting for communication with a lower priority process
(P2), it may have to wait a longer time than seems reasonable. A third
process (P3) of middling priority might be hogging the CPU. The channel
(shared resource between P1 and P2) causes the priority inversion
problem. The network of processes seems to be conflict-free, but if one
considers the communication between P1 and P2 as one communication

 Q

P3

P1

P2

P3

P1

P2

(c)

(a)

P3

P1

P2

(b)

c c

c

a

a a

 Q

P3

P1

P2

(d)

c

a

 5. Notion of priorities

200

process Q then a priority conflict raises between the processes Q and P3.
See the conflicting unequally-prioritized operators between Q and P3 in
Figure 5-2b. The analysis technique to find priority conflicts is described
in Section 3.8.4. In other words, at the moment of rendezvous a priority
inversion problem raises.

In order to do justice to the overall system performance, it would be
reasonable to elevate the priority of P2 to the level of the blocked P1 when
P1 gets blocked on the channel with P2. In other words, the lower-priority
process inherits the priority of the blocked higher-priority process until
the high-priority process can carry on. This solution is called priority
inheritance (Lauer and Satterwaite, 1979; Sha et al., 1990). Figure 5-2c
illustrates the effect of priority inheritance on the relationships. On
priority inheritance, the priority relationships become different as was
originally specified. This is also clarified in Figure 5-2d, which shows that
the priority conflict is solved. Immediately after communication via the
channel the priority will be restored to the lower-priority as was
specified by the priority relationships, see Figure 5-2a. Here, priority is
no longer static and can temporarily change in order to serve a higher-
priority process. The ceiling protocol provides a solution for transitive
blocking (chain of blockings) (Cornhill et al., 1978). The ceiling protocol
could prevent deadlock, but deadlock is a pathological problem of the
process architecture and not a problem of scheduling. In addition, the
inheritance and ceiling protocols are problematic for channel-based
software architectures, since channels can only retrieve the priorities
between processes on the moment when both threads of control enter the
channel. The channel does not know a priori which processes (or threads)
access the channel.

Priority inversion comes from a bad design in the first place and the
priority inheritance and the ceiling protocol are bad solutions to a bad
design. From the point of view of a higher-priority process P1, the last
thing it wants is the priority to be raised of another process P2. Priorities
are set for a reason. This does not imply that priorities are static at all
times. Priorities should be able to change by external influences in order
to improve the performance of the program. The priorities that are
initially set are called preference priorities.

5.4 The priority inversion problem

201

A design pattern, which follows the following rule, can avoid the priority
inversion problem.

Do not communicate with a lower-priority process unless you do not have
any real-time guarantees to deliver; otherwise, feel free to communicate
with a lower-priority process (and maybe get blocked) if you currently have
no real-time service commitments.

This solution to solve priority inversion is different to priority
inheritance, which follows the design pattern:

Give the high-priority servicing process an equal-priority buddy process
that has the only task to communicate with a lower-priority process.

Thus, when a high-priority servicing process needs to communicate with
a lower-priority process, get its buddy process to do it. The buddy
process is listening out for the servicing process so the servicing process
will not be blocked communicating with its buddy. The buddy may get
blocked communicating with the lower-priority process but no matter
the higher-priority process is still alive and servicing. The servicing
process needs to remember not to communicate with its buddy until its
buddy communicates back after dealing with the lower-priority process.
If this is necessary, some more buddies are needed. The buddy process
needs to be of equal-priority with the servicing process so that the buddy
will succeed as soon as the low-priority process is ready to communicate
with it so that it gets the attention of the servicing process when that is
been done.

This design pattern needs no priority rising, but the design must be
refined with additional processes and handshaking between the higher-
priority process and the buddy process. A simplified refinement that
overcomes the priority inversion problem is a buffer process that has the
role of a buddy process as depicted in figure Figure 5-3a. The higher-
priority process writes to the buffer and can immediate continue without
being blocked. After servicing the buffer process waits until the lower-
priority process consumes the message.

 5. Notion of priorities

202

Figure 5-3 (a) Solution with buffer process,
(b) sub-sampling buffered channel,
(c) super-sampling buffered channel.

A buffered data channel replaces a buffered process and additional data
channels. Such an implicit buffer simplifies the CSP diagram. See Figure
5-3b and Figure 5-3c. The buffer is a property of a data channel as a
means to solve priority inversion problems. Figure 5-3b uses a sub-
sampling buffered data channel that overwrites values and Figure 5-3
uses super-sampling which generates values that are equal to the last
value that was written to the channel. In Appendix F, a proof is given
that a sub-sampling or super-sampling buffered data channel can solve a
priority inversion problem in case data channels cause priority conflicts.

A buffered data channel may save context switches but at the same time
it can decrease the reactiveness of the program. In CSP-based process
architectures one can reason about where to place a specific kind of
buffered data channel instead of a rendezvous data channel. This is also
discussed in Section 3.8.5. One should start the design of a process
architecture with rendezvous channels. From this point on one can refine
the model with buffered channels with the right kind of buffer at places
where a buffer does improve the throughput and does not decrease the
reactivity and responsiveness of the system.

The reverse approach, by starting a design with an asynchronous
communication model, complicates the preservation of reactivity and
economically using memory. In small computer systems memory can be
scarce. Note that asynchronous behaviour does not solely come from
buffered communication. Asynchronous behaviour is described by ALT

P3

P1

P2

P3

P1

P2

(b) (a)

Buf

buffered
channel with
sub-sampling

P3

P1

P2

(c)

buffered
channel with

super-
sampling

c

d a a a

c c

5.5 Scheduling of communication primitives

203

and PAR compositions (Roscoe, 1998; Welch and Bakkers, 1992). A
buffered data channel is described as a CSP process with an ALT, a PAR,
and an additional CSP channel (Roscoe, 1998). Furthermore, a deadlock-
free program with rendezvous data channels will be deadlock-free with
buffered data channels. The reverse may not be true (Roscoe, 1998).

Call channels and barriers are not buffered in CT since they require strict
rendezvous. Solving the priority inversion problem with call channels
and barriers is not as easy as with data channels. The process architecture
should be designed such that it is free from priority conflicts. Method
calls that do not return data can be buffered, but this is of no use when
methods must be served in a strict sequence. Processes that participate in
the barrier should have equal priorities.

5.5 Scheduling of communication
primitives

To give some insight and trust in the scheduling policy of the CSP-based
synchronous communication model, the scheduling policy on data
channels, call channels, and barriers are described in this section.

5.5.1 Scheduling of data channels

Hoare (1974; 1985) suggests that the order of scheduling of processes on a
channel should be fair according to a first-come-first-served policy. Figure
5-4 illustrates an example of fair scheduling on a channel in steps from
to in an equally-prioritized parallel relationship. Ignore the unequally-
prioritized operator on the compositional interrelationship in the figure
for now, which will be discussed later.

In Figure 5-4a, the writer process is first to write on the channel c and it
gets blocked until the reader comes along to read the data from the
channel. After communication the channel schedules the writer process
first. This is similar for Figure 5-4b where the reader is first to reclaim the

 5. Notion of priorities

204

channel and continues before the writer. For each channel
communication two context-switches are performed.

Figure 5-4 Rendezvous and first-come-first-served scheduling:
(a) writer first.
(b) reader first.

In systems with frequent channel communications and small
computations, the total amount of context-switch time can consume a
significant amount of processor time. A control system, where control
loops continuously input and output on internal and external channels, is
such a class of system. The performance can be significantly improved by
a scheduling policy that eliminates one context-switch per channel
communication, while preserving its reactivity. This scheduling policy is
based on a last-come-first-served policy as illustrated in Figure 5-5a and
Figure 5-5b, which has been adopted in CT. The improvement relates to
the entire program and not to individual processes.

In Figure 5-5a the writer process is first to write on the channel and it
gets blocked until the reader comes along to read the data from the
channel. After communication the channel lets the current thread of
control continue; thus the reader process will be scheduled first and the
writer process will be scheduled at a later time. See the steps to .
This is similar for Figure 5-5b where the reader process is first and the
writer continues before the reader. For each channel communication one
context-switch is performed. Cyclic processes will alternatively read and
write on channels which do not defect the reactive behaviour of the total

write read

writer reader

c write read

writer reader

c

(a) (b)

 ,

 ,

5.5 Scheduling of communication primitives

205

architecture. In periodical control processes this is always the case. For
example, if the processes in Figure 5-5 are cyclic executing and
repeatedly read or write on the channel then the behaviour alternates
between Figure 5-5a and Figure 5-5b.

Figure 5-5 Rendezvous and last-come-first-served scheduling:
(a) writer first,
(b) reader first.

In case the writer and reader processes have different priorities, the
scheduling policy falls back to the policy as described in Figure 5-4. In
this case, consider the unequally-prioritized relationships on the
compositional interrelationships.

Shared data channels apply the first-come-first-served policy between
multiple writers and readers of equal priorities and it applies highest-
priority-first policy for multiple writers and readers of unequal priorities.

5.5.2 Scheduling of call channels

The scheduling policy of a client-server relationship with equal priorities
is illustrated in steps from to in Figure 5-6. No matter which process
accesses the call channel first, after communication the client (or caller)
continues before the server, we call this the caller-first policy. The caller-
first policy is an optimal solution in a run-to-completion execution
framework, like in programs written in Java or C++. Hence, step is

write read

writer reader

 write read

writer reader

(a) (b)

c c

 5. Notion of priorities

206

always performed by the caller’s thread of control. Although, the policies
of data channels and call channels differ, but the rendezvous concept
remains equal.

Figure 5-6 Rendezvous and caller-first scheduling:
(a) client first,
(b) server first.

The scheduling policy of a client-server relationship with equal priorities
is illustrated in steps from to in Figure 5-7.

Figure 5-7 Rendezvous and highest-priority--first scheduling:
(a) client first,
(b) server first.

As with shared data channels, a first-come-first-served queuing policy
between multiple clients and servers with equal priorities is applied for

on() accept

client server

on() accept

client server

(a) (b)

on() {
… }

on() {
… }

c c

on() accept

client server

on() accept

client server

(a) (b)

on() {
… }

on() {
… }

c c

5.5 Scheduling of communication primitives

207

shared call channel. Once a client and server are committed to
communication on a shared call channel, the caller-first policy applies.
Multiple clients and servers are scheduled with unequal priorities are
scheduled with the highest-priority-first policy.

5.5.3 Scheduling of barriers

The scheduling of processes that participate in barrier synchronization is
a combination of a last-come-first-served policy and a first-come-first-
served policy. The last-come-first-served policy applies for the last
process that participates in the barrier synchronization. The thread of the
last process invokes the parallel process at a lower layer. See the process
with parallel sub-processes A, B, C and D in Figure 5-8 (step).

Figure 5-8 Rendezvous of a barrier synchronization primitive.

sync

P R

b

A

S

Q

B

C

D

A

B

C

D

sync

sync sync

 5. Notion of priorities

208

Each sub-process is provided by a participating process respectively P, Q,
R, and S. After the lower-layer process is performed, the first-come-first-
server policy is applied that schedules the other three participating
processes in that order. When the processes P, Q, R, and S are cyclic then
the policy rotates.

The barrier scheduling policy is the same as for the PAR construct that is
applied when it releases its parallel processes at termination. Hence, the
PAR construct is also a barrier construct. The PRIPAR also performs a
barrier.

5.6 Alting with notion of priority
The run-time environment of software is deterministic and therefore the
software must specify the appropriate deterministic decisions. Decisions
can be fair or unfair. A fair decision is made with respect to previous
decisions the mechanism has made. An unfair decision can be any
decision that is not a fair decision. In this section we present the ALT as a
fair alternative construct and the PRIALT as an unfair alternative
construct. This criterion is based on local priorities between guards.

In circumstance where surrounding priorities are involved, the
alternative constructs must be fair and serve the alting process with
highest priority first. This precaution guarantees that the priorities of
guards do not cause priority inversion problems that likely decrease the
overall performance of process architecture.

Two types of alting are discussed, namely resolute alting and preference
alting. Resolute alting is known in occam and preference alting is an
improved approach that is proposed in this thesis. This section will show
that preference alting is superior to resolute alting. Preference alting has
been adopted in CT.

5.6 Alting with notion of priority

209

5.6.1 Resolute alting versus preference alting

In occam the ALT and PRIALT constructs are identical in that they share
the same PRIALT implementation. The ALT and PRIALT
implementations are unfair choice constructs, i.e. declining priorities are
assigned to the guards. The ALT should have been a fair choice construct
as suggested by Roscoe (1987). Listing 5-3 illustrates this fair choice
construct based on a PRIALT with the use of conditional input guards.
This is what the occam’s ALT should have been, but unfortunately this
fair alting implementation is difficult to realize on the transputer. In this
thesis, the ALT refers to Listing 5-3 so that the ALT represents a fair
choice construct and the PRIALT an unfair choice construct.

SEQ

 PRIALT

 (i ≤ 0) & g0
 j = 0

 (i ≤ 1) & g1
 j = 1

 ...

 (i ≤ n-2) & gn-2
 j = n-2

 gn-1

 j = n-1

 (i > 0) & g0

 j = 0

 (i > 1) & g1

 j = 1

 ...

 (i > n-2) & gn-1

 j = n-2

 CASE j

 0

 P0

 1

 P1

 ...

 n-2

 Pn-2

 n-1

 Pn-1

 i = (i+1) mod n

Listing 5-3 Fair alternative construct with conditional input guards.

Here, gi is a guard and the CASE performs branches to the process Pi.
Index i is the priority parameter used by the preference rule that is
expressed by the conditional guards. The conditions provide a fair
priority ordering among the guards. The fairness criteria used is that the
guards are cyclic prioritized with the guard chosen last time getting
lowest priority next time. This will be interpreted as if the guards under

 5. Notion of priorities

210

the ALT have equal priority. This solution guarantees that no guard can
be activated twice while there is another one waiting. A slightly simpler
solution of a fair ALT is given by Lau and Shea (1988) using occam 2,
which is basically the same as the one above.

The prioritized choice of the fair ALT as described by Roscoe (1987) and
the PRIALT as described by Lawrence (1998) are isolated to the
alternative process. This implies that the decision is not completely
externally influences. The implementations of the ALT and priority-
ordering of the PRIALT are basically cyclically (non-busy) polling
mechanisms that test the readiness of each guard in a cyclic fashion
(Barrett et al., 1988). These decision mechanisms are focused on the local
priorities of its guards and not on the priorities of its alting processes. We
call this type of alting resolute alting. In this section we will refer to the
fair ALT as described by Roscoe and not to the occam ALT which is
equal to the PRIALT.

An unfortunate mapping between the local priorities of the guarded
processes in a PRIALT construct and the priorities of the alting processes
in a PRIPAR construct can cause a priority mismatch (Burns, 1987; 1990).
This mismatch results in a performance penalty. In circumstances where
the priority of a process is changing (e.g. due to the use of deadline-
driven scheduling or priority inheritance), the use of a static mapping
would no longer be adequate. In this case, even the fairness of the ALT
can become unfair when the wrong choice has been made and a lower-
priority client process is served before a higher-priority client process.
For real-time applications these problems can have a significant burden
on the deadlines. Therefore resolute alting is not optimal for real-time
software. A solution is to adapt the decision mechanism in such a way
that it uses preference priorities of its guards. Preference priorities are
locally set in the alternative process and they adapt to the surrounding
priorities of the alting processes. Important is that the priorities of the
alting processes should dominate over the priorities of the guards. Burns
(1987; 1990) calls this type of alting preference alting.

The choice of resolute alting is not completely externally influenced and
this is in contradiction to the fact that they represent the external choice
operator in CSP; meaning that the choice can be externally influenced.

5.6 Alting with notion of priority

211

The problem of resolute alting will be illustrates in the next examples in
Listing 5-4a-d. Preference alting is explained as a solution that is suitable
for real-time systems.

PAR

 c2!a -- P1

 c1!b -- P2

 FOR 0 TO 1

 ALT -- P3

 c1?x

 P(x)

 c2?y

 Q(y)

(a)

PAR

 c2!a -- P1

 c1!b -- P2

 FOR 0 TO 1

 PRIALT -- P3

 c1?x

 P(x)

 c2?y

 Q(y)

(b)

PRIPAR

 c2!a -- P1

 c1!b -- P2

 FOR 0 TO 1

 ALT -- P3

 c1?x

 P(x)

 c2?y

 Q(y)

(c)

PRIPAR

 c2!a -- P1

 c1!b -- P2

 FOR 0 TO 1

 PRIALT -- P3

 c1?x

 P(x)

 c2?y

 Q(y)

(d)

Listing 5-4 Scheduling behaviour of alting;
(a) PAR – ALT composition,
(b) PAR – PRIALT composition,
(c) PRIPAR – ALT composition,
(d) PRIPAR – PRIALT composition.

ALTing in the presence of a PAR.

Listing 5-4a illustrates an ALTernative process communicating with two
alting processes in parallel. The PAR executes its processes in a cyclic
fashion and starts with the first process in the list of processes. Process P1
outputs on channel c2, process P2 outputs on channel c1, and process P3
alternates two times to serve both alting processes. The PAR starts with
process P1. Due to the deterministic behaviour of the PAR we assume that
P1 and P2 are waiting for communication when the ALT is executed.

The trace of communication in this example will be <c1,c2> and this
sequence is determined by the cyclic selection mechanism of the ALT.
The execution order of the guarded processes is
() ()1? () ; 2? ()c x P x c y Q y→ → . The selection fairly alternates between the
two guarded processes P(x) and Q(y). This behaviour is exactly
according to our expectation. This description applies for a resolute ALT
and for a preference ALT since they behave equally under the PAR.

 5. Notion of priorities

212

PRIALTing in the presence of a PAR

Listing 5-4b illustrates a PRIALTernative process communicating with
two alting processes in parallel. The PAR starts with process P1. The trace
of communication will be <c1,c2> and this sequence is forced by the
selection mechanism of the PRIALT. The execution order of guarded
processes is () ()1? () ; 2? ()c x P x c y Q y→ → . This behaviour is exactly
according to our expectations. Note that the PRIALT under the PAR gets
close to the behaviour of the ALT considering the random arrival times on
which alting processes access the channels. Again, this description
applies for a resolute ALT and for a preference ALT since they behave
equally under the PAR.

ALTing in the presence of a PRIPAR

Listing 5-4c illustrates an ALTernative process communicating with two
alting processes with different priorities. The PRIPAR executes its
processes in a preemptive fashion and starts with the first process in the
list of processes. The PRIPAR starts with process P1. With a resolute ALT,
the trace of communication will be <c1,c2>, whereby P2 is served before
P1. The resolute ALT determines the sequence of this trace. By looking at
the urgencies of the alting processes P1 and P2, we would expect that
process P1 should be served (read) before process P2, because P1 has more
important things to do. The resolute ALT starts with checking the first
guard and therefore it will serve P2. The resolute ALT will check the
second guard first on the second run, this time P1 will be served, but then
this can be too late for P1 to meet its deadline. The desired trace of
communication should be <c2,c1>, whereby P1 is served before P2. This
sequence must be forced by the PRIPAR. The preference ALT is exactly
doing this. The preference ALT will determine the priority order of its
guards based on the priority of the alting processes under a PRIPAR.
Thus, in Listing 5-4c the priority ordering of the guards will be
determined by the priorities of the alting processes. With preference
alting, the trace will be <c2,c1>.

5.6 Alting with notion of priority

213

PRIALTing in the presence of a PRIPAR

Listing 5-4d illustrates a PRIALTernative process communicating with
two alting processes with different priorities. With a resolute PRIALT the
trace of communication will be <c1,c2>. This is not an optimal trace,
because P1 has a higher priority than P2 and therefore P1 should be
served before P2. The preference PRIALT will adapt its decision to the
urgency of its surrounding client processes and therefore the trace of
communication will be <c2,c1>. Thus, the sequence of the trace is
primarily determined by the PRIPAR. This is the optimal trace that is
desired. Remarkably, a resolute PRIALT is known as an unfair ALT, but
the preference PRIALT adapts its behaviour to the priorities of the
surrounding client processes and becomes fair.

5.6.2 Preference alting implementation

The mechanism of preference alting is briefly discussed in this section.
Both the preference ALT and preference PRIALT are based on the same
mechanism. The difference between these ALTs is that the ALT assigns
equal priorities to its guards and the PRIALT assigns declining priorities
to its guards; as they were resolute ALTs. These priorities are so-called
preference priorities which are preferred by the alternative process.
However, these priorities can be overruled by surrounding priorities that
are specified by unequally-prioritized parallel relationships between the
alting processes. Equally-prioritized parallel relationships do not
overrule the priorities of the guards and thus the priorities of the guards
are applied to the choice mechanism. The basic idea is the same as for a
shared channel with multiple writers that are communicating with a
single reader. A communication diagram is given in Figure 5-9a. We omit
multiple readers for the moment.

 5. Notion of priorities

214

Figure 5-9a-b Alting on an any-to-one channel.

All processes P1, P2, P3 and P4 run in parallel. The figure shows an
imaginary queue annotated to the channel. This queue stores the threads
from the blocking writers on the channel. The thread on front (the right
side) of the queue claims the channel and it is the first one to be released
after communication with the reader. The order is determined by a
prioritized sorting algorithm. After every release the queue is resorted.

The sorting algorithm implements two sorting policies. If the writers
have the same priority then they will be queued in a first-come-first-served
order, because this is fair with respect to their arrival time. Otherwise
they are queued according to their relative priorities, namely highest-
priority-first, because this is fair with respect to the specified priorities.

In Figure 5-9a, the processes P1, P2, P3, and P4 execute with equal
priorities and assume that the arrival time on the channel is P2, P3 and P1.
Consequently, these processes are queued in that order; P2 followed by
P3 and P3 followed by P1. Process P4 will serve P2.

In Figure 5-9b, the processes P1, P2, and P3 execute with unequal
priorities. Writer P1 has the highest priority, writer P3 has the lowest
priority, and the priority of the writer P2 is somewhere in the middle. The
reader process P4 runs in parallel to the writer processes. The sorting
algorithm will store the process in order of priority whereby the highest
priority process will be stored in front of the queue. Thus, if process P3 is
the first process waiting on the queue for the reader and when P1 comes
along, then process P1 will take the place of P3 and P3 will be the next
element in the queue. Thus, a process will be released in prioritized
order. The reader will serve P1 first since it has the highest priority of all

P2 P1

P3

(a)

P4

(b)

P2 P1

P3

P4

5.7 Efficiency

215

other waiting processes. The channel will adapt its alting queue to any
changes in priorities of its alting processes. This is fair.

The reader side of the channel has a similar prioritized queue for
multiple readers. Multiple readers accessing a shared channel
simultaneously are rarely applied since the race condition between the
readers can give unpredictable or undesired results. A design tool could
warn the user for race conditions in the design.

The preference alternative process uses the same idea as with any-to-any
channels. The previously described prioritized queuing policy for any-to-
any channels is equivalent to the queuing policy for preference alting.
The semantics, properties, and behaviour of any-to-any channels and
preference alting are discussed in Appendix E. In CT, the guards are
stored in the alting queue instead of the threads of alting processes. The
alting queue is a linked-list of guards. Each guard can be chained to other
guards and created a queue in which guards can easily be added,
removed, or moved. Also, each guard in the queue has reference to its
associated guarded process. The behaviour of the ALTs automatically
adapts to every new situation. This includes dynamic scheduling. In
circumstances whereby the priority of alting processes changes, while
some guards are already on the alting queue, the selection may not be
adequate. It is necessary to reorder alting queues on every change of
unequally-prioritized parallel relationships.

5.7 Efficiency
The efficiency of CT depends on the optimization of all the queues. These
are the waiting queues, ready queues, and alting queues. All these
queues are prioritized in one way or the other.

5.7.1 Waiting queues

Semaphores and monitor constructs are commonly used to synchronize
threads (Brinch-Hansen, 1972; Dijkstra, 1965; Hoare, 1974; Silberschatz

 5. Notion of priorities

216

and Galvin, 1994). Semaphore and monitor constructs are integral part of
the CSP constructs, channels, and barrier implementations. These
synchronization constructs maintain one or more waiting queues. These
waiting queues function as the alting queues in channels. These queues
are efficiently implemented as a prioritized link-list mechanism
performing both the first-come-first-served and highest-priority-first
sorting policies.

5.7.2 Ready queues

The scheduler has a ready queue of processes waiting to be scheduled by
the dispatcher. The prioritized sorting algorithm of the ready queue is
based on recursive index-table technique (Labrosse, 1992). This technique
takes two steps to point the right ready queue for storing a pointer to a
process thread that is ready to execute. Each PRIPAR creates its own set
of ready queues and every PAR assigns a process thread for each process
to the ready queues of nearest surrounding PRIPAR construct. The idea
of nesting is similar as with a nested alternative construct. Every PRIPAR
creates a separate scheduler that is scheduled by its parent PRIPAR
construct. The result is an advanced nested scheduler. Nesting of static
and dynamic schedulers is possible and this is an interesting topic for
further research. A PAR construct that has no parent PRIPAR becomes a
PRIPAR with a PAR as its first and highest priority process in the
program; otherwise the kernel is not setup and no threads can be
scheduled.

5.7.3 Alting queues

The prioritized alternative implementation maintains a separate alting
queue as a linked-list of guards. The queuing mechanism supports input
guards, output guards, call guards, accept guards, timeout guards, skip
guards, and nested ALTs. The implementation is reasonably efficient for
a number of reasons:

5.8 Output guards

217

• The entire implementation is divided in simplified objects. Most
of the algorithm is performed by the alting queuing object,
which performs sorting of a linked-list of guards in prioritized
order. The guard objects allow nesting of other guards and
implements a few simplified recursive methods. The ALT
construct is a guard itself and inherits the implementation of the
guard. The channels also carry out bits of the implementation
only when the channel is part of a guard and only when a
process reads/accepts or writes/calls on a channel.

• Each PRIALT holds an alting queue. The ALT uses the alting
queue of a surrounding PRIALT. Therefore, the overhead of
sorting of the alting queue scales with the sum of nested
PRIALTs. Exceptionally, if there is no surrounding PRIALT then
the root ALT will always create a root alting queue.

• When comparing the CT implementation with the code of the
transputer-based implementation then we can conclude that:

o The worst case of the sorting algorithm for each PRIALT is
the same worse case as for the algorithm of the transputer-
based implementation.

o Adding guards to the queue, removing guards from the
queue, and moving guards in the queue as a result of
sorting, are the additional overheads compared to the
algorithm of the resolute ALTs. These queue
manipulations are just a few pointer assignments.

Last but not least, the fairness that can be achieved by preference alting is
expected to have a greater effect on the performance than the latency of
sorting. This statement should be studied in future research.

5.8 Output guards
As a consequence of the queuing mechanism, the alternative constructs
are flexible enough to support output guards. In this research output
guards are investigated since CSP supports them. Output guards are
discussed in this section and can be used to simplify a design.

 5. Notion of priorities

218

5.8.1 Alting disagreement

Jones (1987) describes that if each process tries to communicate by a
conditional communication then they must both make the same decision
about whether they want to communicate. Any attempt to make the
decision independently at each process is likely to lead to a
disagreement, especially for ‘truly’ concurrent or physically separated
processors. This is called the alting disagreement problem. For example,
Listing 5-5 illustrates a scenario with two communicating alting
processes (performing conditional communication at each end of a
channel) that will never commit in communication.

PAR

 ALT

 chan!x -- write x value to chan

 P() -- perform process P

 ...

 ALT

 chan?y -- read y from chan

 Q(y) -- perform process Q

 ...

Listing 5-5 Alternative disagreement.

A solution is imposing restrictions on the way in which conditional
communications can legally be used in programs. The restriction adopted
in occam is to ensure that no pair of conditional communications ever
meet. Whenever a pair of communications matches, at least one is
guaranteed to be unconditional. Jones shows that the restriction of
eliminating output guards and allowing input guards is sufficient;
programming without input guards is less natural than programming
without output guards. This means that in each pair of communicating
processes there is an output, which is necessarily unconditional. He
illustrates that each output guard can be replaced by a communication
pattern with an input guard. Listing 5-6 shows an example of three
processes in parallel, i.e. Process1, Process2, and Process3. Process1 is the
alternative process and Process2 and Process3 are the alting processes.

5.8 Output guards

219

PAR

 ALT -- Process1

 chan1!x -- output guard

 P()

 chan2?y

 Q(y)

 SEQ -- Process2

 chan1?z

 S(z)

 SEQ -- Process3

 chan2!w

 T()

Listing 5-6 Example with an output guard.

In occam, the output guard (chan1!x) is forbidden and therefore this
example must be transformed into Listing 5-7. An additional request
channel is required to trigger the guard. The associated alting process
Process2 must agree with the protocol of first outputting a request on
chanx and then reading the object from chan1.

PAR

 ALT -- Process1

 chanx?request -- request first

 SEQ

 chan1!x

 P()

 chan2?y

 Q()

 SEQ -- Process2

 chanx!true -- perform request

 chan1?z

 S(z)

 SEQ -- Process3

 chan2!w

 T()

Listing 5-7 Example with only input guards.

This workaround calls for an additional channel and an expansion of the
communication protocol. In legal circumstances, an output guard may
simplify the design and the result is likely to be faster than applying a
workaround with an input guard. Instead of imposing restrictions, as
suggested by Jones, another solution is to allow output guards when it

 5. Notion of priorities

220

suites best. The above mentioned alting disagreement problem should be
detected by tools before run-time and results in an error message.

The workaround is a source for an extra priority inversion problem when
the alternative process has a lower priority than its alting processes.
Listing 5-8 shows the example of Listing 5-7 with the alting process
executing at a higher priority than the alternative process. Process
Process4 executes at an intermediate priority and it could preempt
Process3. We assume that Process3 gets enough time to perform since the
whole system should obey the real-time requirements.

PRIPAR

 PAR

 SEQ -- Process2

 chanx!true -- perform request

 chan1?z

 S(z)

 SEQ -- Process3

 chan2!w

 T()

 SEQ -- Process4

 ...

 ALT -- Process1

 chanx?request -- request first

 SEQ

 chan1!x

 P()

 chan2?y

 Q()

Listing 5-8 Priority inversion problem with alting and input guard.

This example suffers from a double priority inversion problem on the
channel input and on the channel output. Buffering chanx may solve the
first priority inversion problem, but due to preemption between
chanx?request and chan1!x, the buffer in chan1 will be empty and it will
block Process2. A super-sampling buffer could be useful, but then the
request signal has no useful function.

Listing 5-9 illustrates a single priority inversion problem with the use of
an output guard. Channel chan1 could contain a super-sampling buffer to
solve the priority inversion problem.

5.8 Output guards

221

PRIPAR

 PAR

 SEQ -- Process2

 chan1?z

 S(z)

 SEQ -- Process3

 chan2!w

 T()

 SEQ -- Process4

 ...other process with intermediate priority

 ALT -- Process1

 chan1!x

 P()

 chan2?y

 Q()

Listing 5-9 Priority inversion problem with alting and output guard.

A buffered channel chan1 makes the guard (i.e. chan1!x) initially true and
P() may be selected even when the higher-priority process did not read
from the channel. The guard could always be true and this could be an
unwanted behaviour. Adequate buffer synchronization can prevent that
the alternative construct never synchronizes on an output guard. For
example, a super-sampling buffered data channel should make its output
guard true after it was read at least once by the alting process; otherwise
the guard should be false since the previous value was not consumed.

5.8.2 Alting agreement

Output guards come with limitations in design and implementation and
they should be applied carefully. The graphical modelling language as
described in Chapter 3 can protect the user from the alting disagreement
problem as described in Section 5.8.1. The design tool could select the
right type of buffering for channels to solve priority inversion problems.

With the current alting queuing mechanism, it is foreseen that the
implementation can be extended in such a way that it can solve the alting
disagreement problem for internal data channels and call channels. For
external data channel communication this is more complicated and
requires additional handshaking over the hardware link. This extension

 5. Notion of priorities

222

has not been implemented since CT is kept compact and efficient.
Certainly, this is a subject for further research.

5.8.3 Model checking and priorities

CSP abstracts away from priorities and the model-checker FDR (2004)
cannot perform a performance analysis based on priorities. The PRI has
no meaning in CSP. FDR can still be used to determine if the program is
deadlock-free simply by removing the PRI; i.e. → . Priorities makes
choices determinism and it reduces event traces to particular sequences
of events which represent the best reactivity or responsiveness. A
performance analysis tool can check these event traces whether an
optimal sequence of events is achieved, or whether the program suffers
from starvation or other performance problems.

5.9 Conclusions
CT implements a task scheduling mechanism, which makes the library
suitable for embedded real-time software. The efficiency of scheduling is
determined by the design of the process architecture. The scheduling
policy is composed by the compositional relationships.

Data channels can be buffered in circumstances where a rendezvous data
channel is a source for a priority conflict. Sub-sampling or super-
sampling buffered data channels can solve the problem in an elegant
way. Buffered call channels and buffered barriers are not supported.
Priority conflicts must be solved by correcting the design by buddy
processes that unblock any higher-priority processes.

Communication between multiple readers and/or writers via an any-to-
any channel has equivalence with alternative constructs. The fair
scheduling policy that applies to any-to-any channels should also apply
to the alternative process. Not surprisingly, the queuing implementations
of the ALT have strong similarities with the queuing implementation of
the any-to-any channel. The PRIALT is a specialization of the ALT

5.9 Conclusions

223

providing a particular unfairness between competitive alting processes,
i.e. having equally-prioritized parallel relationships.

Preference alting contributes to a better performance than resolute alting.
Preference alting allows priorities to propagate over events. This way,
alternative constructs can make efficient decisions, which are influenced
by the surrounding priorities between alting processes. Important is that
any inadequate mapping between an unequally-prioritized parallel
construct (PRIPAR) and an unequally-prioritized alternative construct
(PRIALT) is corrected by the preference alting. Preference alting and
preference priorities provide the ability of dynamic scheduling. The
ability of preference priorities allows a CSP-based program to schedule a
static process architecture in a dynamic way in order to achieve optimal
performance. The notion of preference priorities will determine time-
critical paths of event handling processes. By observing those paths of
event traces and event handling processes one can reason about the
length and deadlines of those paths. Timing analysis has not been
described and may require further research.

The implementation of the preference ALT constructs in CT supports
output guards. Output guards can be used to simplify a design. One
should keep the alting disagreement problem in mind to ensured safety.

C H A P T E R 6

CSP concepts applied
to control systems

6 CSP concepts applied to control systems

6.1 Introduction
The applicability of the proposed methodology for control applications
and embedded computer systems is illustrated in this chapter. Several
applications are discussed to which CSP diagrams, CTC or CTC++ was
applied. It is shown that this methodology offers a concurrency
paradigm that has the ability to manage complexities in control software.

Two low-cost DSP-based embedded computer systems are discussed in
Section 6.2, to which CTC and link drivers were applied. In Section 6.3, a
test bed is briefly discussed for which the application, written in CTC++,
is portable between platforms. CT for the PC architecture is discussed in
Section 6.4. It is applied to two mechatronic systems: ARTY and JIWY.
ARTY is discussed in Section 6.5 and JIWY is discussed in Section 6.6.
Conclusions are drawn in Section 6.7.

6.2 20-Controller
There are ways to create transputer-like embedded computer systems
based on heterogeneous CPUs (other than transputers). These systems
benefit from the CSP paradigm. For this research, two different low-cost

 6. CSP concepts applied to control systems

226

embedded computer boards were used: one equipped with OS-links
(transputers class links) and one equipped with a CAN bus (common
field bus in industry). This initiative was called 20-Controller. The suffix
“20” is the abbreviation for “Twente” (refers to the University of Twente)
and “Controller” denotes that the board was made to perform a variety
of control applications. These embedded computer systems were
programmed with CTC or CTC++ and these systems inherit the
scalability and distribution of transputer technology.

OS-links

A low-cost processor board, based on the Texas Instruments TMS320F240
low-cost 16-bit fixed-point DSP, has been developed for educational
purposes and demonstrations (Lahpor, 1998). The board was specially
developed to be able to distribute a concurrent controller application
over multiple 20-Controllers using external links. The concept was based
on a transputer-based architecture of heterogeneous processors. See
Figure 6-1.

Figure 6-1 Network of 20-Controllers via transputer links.

Each 20-Controller has 3 OS-links (i.e. transputer links according to the
IEEE 1355 standard) implemented on an FPGA. Each OS-link establishes
a reliable connection with another 20-Controller. OS-links represent
rendezvous channels in hardware. Channel communication via OS-links
is deterministic and can guarantee hard real-time requirements.
Unfortunately, only one 20-Controller was built and thus the OS-links
were not used. The 20-Controller is shown in Figure 6-2. An additional
USB link was intended for configuring and monitoring the board via a

OS-links

20-
Controller

2

20-
Controller

3

20-
Controller

4

20-
Controller

1

USB

Workstation

6.2 20-Controller

227

workstation. For this feature, a footprint larger than the one
implemtented on the prototype board is required.

Figure 6-2 The 20-Controller prototype based on a TMS320F240 DSP.

The processor is optimized for digital motor/motion control applications
and has some I/O-functionality integrated on chip for this purpose. 20-
Controller is equipped with external devices to increase its applicability
for the larger variety of motor control applications, which are necessary
for the student practicum.

CTC was ported to the TMS320F240 and for almost every device on the
20-Controller a link driver was made (van Drunen, 2000). Link drivers
were plugged into data channels so that processes can communicate with
the hardware via data channels. The methodology provided guidance,
which is imposed by the CSP concepts and CT for developing embedded
real-time software in a sound and systematic way. The distinction
between processes, channels, compositional constructs, and link drivers
helped a great deal in separating concerns and simplifying the code
structures and the documentation. Once the link drivers were created,
one could entirely focus on the implementation of the application rather
than on the platform-specific technical difficulties or thread
synchronization. The methodology managed complexities by separating
concerns and simplification. This simplification decreased the
development time of the software without being an expert in
programming embedded systems.

 6. CSP concepts applied to control systems

228

CAN bus

The laboratory of Control Engineering was sponsored with ADSP-21992
processor boards by Analog Devices. See Figure 6-3. These embedded
processor boards are equipped with a CAN bus (Bosch, 2003; ESD, 2003)
which is commonly used as a field bus in industry.

Figure 6-3 The 20-Controller prototype based on a ADSP-21992 DSP

The CAN network is used to distribute control applications on different
embedded processor boards. An example is depicted in Figure 6-4. CTC
and later CTC++ have been ported to the ADSP-21992 on 160 MHz (Orlic
et al., 2003). CAN link drivers have been developed which implement
channels via the CAN bus.

Figure 6-4 Network of 20-Controllers via a CAN bus.

CAN bus

20-
Controller

20-
Controller

20-
Controller

20-
Controller

USB

Workstation

6.3 MIMO-OFDM test bed

229

6.3 MIMO-OFDM test bed
At the laboratory of Systems and Signals, CTC++ was ported to the
TMS320C6711 DSP architecture. CTC++ was used to implement a CSP-
based processing architecture for a flexible Multiple Input Multiple
Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM)
test bed (Cronie et al., 2003). High-priority processes had to perform hard
real-time tasks (taking advantage of data streaming for which the
TMS320C6711 is optimized) and low-priority processes performed soft
real-time communication with the user. Multiple external channels (link
drivers) were developed that allowed the processes to communicate with
the setup. The CSP paradigm guided this project without the
requirement of extensive knowledge about multithreading and more
importantly this project was accomplished the first time right.

The TMS320C6711 ran on 166 MHz which appeared too slow for the job
and therefore a PC with a 2.4 GHz Intel Pentium PC was used. The
application that ran on the TMS320C6711 also ran on the PC. Only the
link drivers for the TMS320C6711 had to be replaced by link drivers for
the PC I/O cards.

This application shows several benefits of using CTC++, such as

• one is freed from programming threads,

• the application is highly portable between platforms,

• guidance and development speedup,

• the application was done the first time right.

6.4 Laboratory PC and embedded PC
PC’s with special I/O cards are often used as laboratory equipment
connected to laboratory set-ups. Such a PC is called a laboratory PC. The
Control Engineering Laboratory uses laboratory PC’s for controller
design and controlling the laboratory set-ups. A PC that is embedded in
a machine is called an embedded PC.

 6. CSP concepts applied to control systems

230

The development of CTC++ for the PC platform resulted in the support
of the following four targets:

• bare processor without file system support

• DOS

• Linux

• Real-Time Linux (RTAI)

CTC++ programs made for Laboratory PC’s run almost unchanged on
embedded PC’s, and visa versa. It may only require a different set of link
drivers which are declared in the top network builder. The processor-
specific methods of these targets are very similar. Therefore, the API of
CTC++ allows a concurrent program to migrate to any of the previously
mentioned targets without changing the process architecture.

GNU compiler tools (GNU, 1996) have been used for all four targets.
CTC++ can run in a single thread from the CPU or threads borrowed
from an operating system, such as Linux or RTAI. CTC++ does not
require an operating system if no file system or any other operating
system resource is required. Due to the embedded scheduler, the context
switch times were equal on DOS and on Linux. The channel
communication time is 1 μs on a 266 Mhz Pentium PC.

6.5 ARTY, an autonomous robot
Student projects in 1998-1999 resulted in an autonomous robot, called
ARTY. ARTY was developed as a mobile robot that can autonomously
drive to a destination (Balkema et al., 1999; Beneder, 1998). See a picture
of ARTY in Figure 6-5.

6.5 ARTY, an autonomous robot

231

Figure 6-5 Photo of ARTY.

ARTY takes its own decisions on the basis of its destination and the
obstacles it encounters. ARTY knows the distances between obstacles by
using ultrasonic sensors and it knows its location via surrounding
beacons. See Figure 6-6.

Figure 6-6 Behaviour of ARTY.

obstacle

destination

beacons

ARTY

 6. CSP concepts applied to control systems

232

ARTY must be able to drive 3 to 4 hours on one battery cell. Low power
consumption was an important design goal. The maximum speed of
ARTY is about 13 cm/second.

ARTY contains the following parts:

• PC/104 board (486 CPU with 4 Mb onboard memory)

• Two navigation wheels for moving forward, backward, or
turning

• Two supporting wheels to keep the frame horizontal

• Eight Polaroid ultrasonic sensors for measuring distance with
surrounding objects

• Two bumpers for detecting obstacles that were missed by the
ultrasonic sensors

• One beacon sensor for detecting its position between infrared
beacons

• Control hardware programmed on an Altera Programmable
Logic Device (PLD)

• 6 Volts battery

The first software was agent-oriented without a proper understanding of
concurrency. The software resulted in a sequential execution framework
of agents in C++ without multithreading. At the time, multithreading
was considered complicated. The agent-based method by van Breemen
(2001) provided a framework for structuring the problem domain
towards an agent-based design of solutions. The divide and conquer
approach resulted in a structured agent-based software architecture
whereby each agent is responsible for a sub-task. Concurrency, which
was natural in hardware and natural in the agent-based concepts,
vanishes in a sequential software framework. Timing, priorities, interrupt
handling, and processor utilization are problems that were implemented
in an ad-hoc manner and became sources of complexities. Especially
when it comes to concurrent event handling and preemption, these
hurdles caused discontinuities between the design and the
implementation. Van Breemen (2001) recommended that the CTC++

6.5 ARTY, an autonomous robot

233

library would have given a good foundation to create a truly concurrent
agent-based framework. As a follow-up, the proposed methodology and
CTC++ were applied to ARTY and resulted in a concurrent control
application, which has the task of controlling the two motors (Engelen,
2004; Modderkolk, 2003) independently from each other. The design and
implementation of the process architecture using CSP diagrams and
CTC++ are described in the next sections. The agent-based method has
been omitted here since it did not yet comprehend concurrency in a
systematic way.

6.5.1 Motor controller description

The task description of the motor controller is shaped by the appearance
of the physical hardware and the way it should service the artificial
intelligence of ARTY. The hardware structure of a single motor control
system is depicted in Figure 6-7. The hardware structure is the same for
the other motor control system.

Figure 6-7 Single motor loop controller.

The control application comprises two loop control processes and one
sequence control process. Each motor is controlled by an independent
control loop, which has the duty of keeping the motor at a desired speed.
The desired speed is provided by the sequence control process. The
sequence control process concerns the artificial intelligence of ARTY and
it can be replaced by any sophisticated process. The concurrent nature of

Encoder

PC/104
Control
System

PWM-
generator

Quad-
decoder

Power
amplifier

Motor

 6. CSP concepts applied to control systems

234

the loop control processes and the sequence loop process should allow
them to operate independently and eventually at different frequencies.

6.5.2 Process architecture

The process architecture of the motor control part of ARTY is derived
from the task description (specification) in Section 6.5.1. The process
architecture is designed using CSP diagrams. Figure 6-8 shows the
communication diagram of the control application. This diagram is the
top CSP diagram and is called the context diagram. This was discussed in
Section 2.2.1.

Figure 6-8 Communication diagram of motor control part.

The process class MotorControllerLeftProcess describes the left loop
controller and the process class MotorControllerRightProcess describes
the right loop controller. Process class SequenceControllerProcess
specifies the sequence control process which commands the loop
controllers to perform a specified speed. The channels that concern
sampling and actuation are specified with sampling intervals Ts1 and Ts2.
In this application, the intervals for both loop controllers are equal,
Ts1=Ts2. See suffix “@ Ts1” and “@ Ts2” in Figure 6-8.

scProc
:Sequence
Controller

Process

mclProc
:MotorController

LeftProcess

mcrProc
:MotorController

RightProcess

setpoint_leftspeed
:double

setpoint_rightspeed
:double

steer_leftspeed
:double @ Ts1

steer_rightspeed
:double @ Ts2

feedback_leftspeed
:double @ Ts1

feedback_rightspeed
:double @ Ts2

6.5 ARTY, an autonomous robot

235

The process class SequenceControllerProcess describes a sporadic
process without a periodic interval. It implements an algorithm that
allows ARTY to drive a simple path. This process can be substituted by a
more intelligent process (Balkema et al., 1999). This process could very
well operate on sampling intervals Ts3 > Ts1, Ts2. Such a change in the
software does not affect the processes in the process architecture.

Figure 6-9 depicts the compositional relationships between the processes.
In this application, the motor controllers perform at a higher frequency
than the sequence controller. Processes that are executing at different
frequencies can be prioritized using a rate-monotonic priority scheme.
This rate-monotonic priority scheme is implemented by the unequally-
prioritized parallel operator on the interrelationship between the
sequence controller and the motor controllers.

Figure 6-9 Composition diagram of motor control part.

Instead of decoupling the sequence controller and the motor controllers
with super-sampling buffered data channels, we used an alting construct
in the motor controller process from the sequence controller process.

The blueprint of the MotorControllerLeftProcess is given by the
communication diagram and the composition diagrams in Figure 6-10
and Figure 6-11 respectively. The blueprint of
MotorControllerRightProcess is similar and therefore omitted.

scProc
:Sequence
Controller

Process

mclProc
:MotorController

LeftProcess

mcrProc
:MotorController

RightProcess

par

pripar

 6. CSP concepts applied to control systems

236

Figure 6-10 Communication diagram of MotorControllerLeftProcess.

Figure 6-11 Composition diagram of MotorControllerLeftProcess.

mclProc:MotorControllerLeftProcess

mcl20Proc:MotorControllerLeft20Process

chanin[setpoint] [true]

mclSubmodel
:MotorControllerLeft ! ?

?

chanin[feedback] [true]

 [true]

prialt

mclProc:MotorControllerLeftProcess

mcl20Proc:MotorControllerLeft20Process

setpoint_leftspeed
:double

feedback_leftspeed
:double @ Ts1

mclSubmodel
:MotorControllerLeft ! ?

? u[setpoint]:double

u[feedback]
:double

y[steer]:double

steer_leftspeed
:double @ Ts1

chanin[setpoint]
:double

chanin[feedback]:double

chanout[steer]
:double

setpoint
:double

feedback:double

steer:double

setpoint
:double

chanin[setpoint]
:double

steer
:double

chanout[steer]
:double

feedback
:double

chanin[feedback]
:double

6.5 ARTY, an autonomous robot

237

The communication diagram and the composition diagram are viewed
by a transparent hierarchical structure, which of course can be viewed in
a layered hierarchical structure of black boxes. The code is hierarchically
structured according to the process architecture.

The process mclSubmodel represents a leaf process that is developed in 20-
sim. Code is generated by 20-sim with C++ templates. This is a process
without channels and it solely performs the control laws using an array
of input-variables u[], an array of output-variables y[] and its internal
state. The arrays of u[] and y[] are a property of 20-sim code generation.
The names setpoint, feedback, and steer between square brackets refer to
index numbers in the arrays. Process mcl20Proc is a so-called 20-process
which always terminates and is dedicated to invoke the methods of the
submodel object. Process mcl20Proc specifies an array of input-channels
chanin[] and an array of output-channels chanout[] on which the process
communicates with its concurrent environment. Process mclProc
performs process mcl20Proc in an infinite loop.

In the composition diagram one can see that the process is reactive on
channels chanin[setpoint] and chanin[feedback]. The points of channel
communication (see the ?- and !-processes) safely synchronize data
transfer between parallel processes. While the process is waiting on the
feedback_leftspeed (or chanin[feedback]) channel, the sequence
controller can alter the setpoint via the setpoint_leftspeed (or
chanin[setpoint]) channel. The prioritized alternative construct takes
care of the proper event handling. The synchronization of the variable
elements in u[] and y[] is based on the sequence operator and does not
require a channel.

In process class MotorControllerLeft20Process the channels are indexed
and in process class MotorControllerLeftProcess these channels are given
sensible names. A process-interface of sensible port names is easier to
use. Process class MotorControllerLeftProcess transforms the indexed
channels to a process-interface with sensible names. The mapping
between the sensible names and indexed channels was not automated
since it would require changes to the 20-sim code-generator. With the
template %submodel%.info, 20-sim creates a MotorControllerLeft.info text
file which is named after the sub-model and contains the indexes and

 6. CSP concepts applied to control systems

238

corresponding variable names that are derived from the 20-sim sub-
model. This file can be used to automate the mapping of the variables
and channels on the corresponding indexed array elements.

6.5.3 Controller design

The process class MotorControllerLeft in Figure 6-10 and Figure 6-11 is
modelled, simulated, and code-generated with 20-sim. The block
diagram of MotorControllerLeft is given in Figure 6-12. The controller
design of the right motor is identical. This figure is a direct copy-and-
paste from the 20-sim model editor.

setpoint, steer, and feedback are discrete speed signals

HardwareSoftwareSimulation Setpoints

setpoint PWM_signalsteer

feedback SpeedSensor

f

velicity

m

ArtyMass

MotorLeftPathGenerator PWMGeneratorMotorControllerLeft

Figure 6-12 Block diagram of MotorControllerLeft.

The dynamics of the sub-models PathGenerator, MotorControllerLeft,
PWMGenerator, and SpeedSensor were designed using block diagrams. The
dynamics of sub-model MotorLeft and the mass was described using a
bond graph. The CSP diagram for the right motor is similar but with
slightly different parameters. All these sub-models are relevant to the
total dynamics of the system and they are relevant to the design of the
control laws. In fact, this behaviour should include the dynamics of the
process architecture—the engagement of events. Most of this behaviour
is part of the simulation framework of 20-sim, i.e. its behaviour
corresponds to a sequence of inputs, calculation, and outputs. However,
the choice between the joystick setpoint and the control loop feedback
had to be artificially solved in 20-sim. This solution is based on a busy
polling workaround, which complicated the sub-model PathGenerator.

6.5 ARTY, an autonomous robot

239

An alternative construct (as shown in Figure 6-11) is a more elegant
solution that makes the application truly reactive without the need for
busy polling constructs. The MotorControllerLeft sub-model is code-
generated and merged with the code of the software architecture as
explained in Section 6.5.2.

The controller processes are implemented by a PID controller. The 8-bit
resolution of the signals steer and feedback was determined by the
creators of ARTY and fixed in hardware. The signals in this model are
real numbers and the PID controller itself operates with real numbers.
Quantization of these signals is performed by the PWMGenerator and
SpeedSensor sub-models.

The PWMGenerator is responsible for translating a discrete steer value
from the controller to a true PWM signal. This sub-model matches the
real PWM device on ARTY. The steer signals are 8-bit values with range
[-127, +127] which corresponds to the speed [-13, +13] cm/s.

The SpeedSensor sub-model converts and scales the velocity of the wheel
(the actual speed of ARTY) to a discrete value of ticks per sample. This
value is also an 8-bit value with range [-127, +127].

The sub-model PathGenerator generates a simple stream of steps from 0
to 120 or from 0 to -120.

6.5.4 Implementation

The implementation of the control software is the translation of the CSP
diagrams to C++ using CTC++ and code from 20-sim. The listings that
resulted from this translation are described in Appendix D.6.

Straightforward translation

All elements in a CSP diagram are declared by the parent process they
describe. The type of the elements and their identifiers specify the type of
declarations or the required code constructs. This allows for a
straightforward translation from CSP diagrams to its C++ code using

 6. CSP concepts applied to control systems

240

CTC++. The translation was done manually, but this can be automated
by a software design tool that supports CSP diagrams.

The controller sub-models in 20-sim are automatically translated to C++,
using C++ templates, by 20-sim. This results in generated processes for
each sub-model that perform the control laws. These processes require
state manipulation to initiate their input and to retrieve their output.

Network building processes

A process that is responsible for constructing a network of processes is
called a network builder. A program can contain a set of network builders.
The network builder that describes the top CSP diagram or context
diagram is called a top network builder. The context diagram is usually the
part of the process architecture that connects the program with the real-
world via hardware links. Therefore, the top network builder is usually
hardware dependent and declares external channels. The external
channels are further connected to sub-processes. Except for the top
network builder, all other network builders are hardware independent.
This makes a CSP-based program highly portable.

Figure 6-8 and 6-9 specify the context diagram of the motor part of
ARTY. In C++, this top network builder is implemented in the main()
method. The main() is the first method called upon to execute the
program. Therefore, the main() method is equivalent to the constructor
and the run() of a process. The implementation of the main() method
and the run() methods of the sub-processes are described in Appendix
D.6.

The top network builder is constructed and executed according to a
uniform pattern, consisting of the following ingredients:

1. All top elements are declared, i.e. external channels, internal
channels, and processes in the context diagram.

2. The top compositional construct is created, which is usually a
PAR or PRIPAR. The declared processes are assigned to the
constructs and connected via the channels.

6.5 ARTY, an autonomous robot

241

3. The timing on channels is set up.

4. The run() method of the construct is invoked.

5. After the run() method terminates, all the declared objects and
processes are deleted.

6. Now the main() method can safely terminate.

Since CTC and CTC++ are written in portable C/C++, the minimal
requirements depend on the quality of the C/C++ compiler and linker.
Compiler optimization can make the code fast, but also large. On the PC
architecture, the CTC and CTC++ libraries indicate the following
minimal requirements:

• 50K bytes of program memory,

• 4K bytes of data memory,

• simple register model of 16-bit registers,

• a 16-bit real-time timer.

These minimal requirements are based on code without debug
information and optimized for space. These minimal requirements
exclude the amount of memory that is eventually used by the application
and link drivers.

6.5.5 Experiments

In open loop, ARTY could not perfectly drive straight forward or
backwards. ARTY tended to go left or sometimes right. The condition of
the battery was an important factor for this drift. The wheels reached
their maximum speed in approximately 0.5 seconds on a steer signal
from 0 to 120 (0-12.2 cm/s). In close-loop, the maximum speed on steps
from 0 to 120 was reached in 0.25 seconds. ARTY drove nicely in a
straight line and the condition of the battery no longer caused drift. The
response of ARTY has become twice as fast.

 6. CSP concepts applied to control systems

242

A circle-test program showed good results. With the input parameters
speed, radius and direction, ARTY obeys this command and drives
circles with the correct speed, correct radius and in the right direction.
See Figure 6-13. After many circles a small error was noticeable but
acceptably small due to slip of the wheel with the floor. This slip was not
taken into account when designing the controller.

Figure 6-13 Circle-test program.

We took the opportunity to experiment with different frequencies for
each loop controller, Ts1≠Ts2. For example, the sampling interval of one
loop controller was set to 10 Hz and the other to 100 Hz. Instead of
controlling both motors on 100 Hz, processor time can be saved so that
the real-time requirements of other processes can be met more easily. The
experiment showed that these different sampling intervals did not
change the behaviour of ARTY. The implementation of periodical events
is an easy task with CTC++, which is orthogonal to the program
structure and scales well on multiple frequency MIMO systems.

6.6 JIWY, a robotic servo system
A two-degree-of-freedom robotic servo system was reused for the
purpose of applying a stepwise refinement trajectory for designing and
implementing the control software. The servo system is called JIWY, see
Figure 6-14. The construction contains two revolute joints that allow a
mounted device, like a camera, to rotate on a horizontal axis and a
vertical axis. JIWY could be used as a surveillance device, whereby

radius

speed and direction

ARTY

6.6 JIWY, a robotic servo system

243

people can remotely view the room in which JIWY resides. Users can
interact with JIWY via the internet. The images from the webcam can be
remotely viewed and JIWY can be steered with a remote joystick or a
remote keyboard. A prototype with a webcam is described in Smith
(2002).

Figure 6-14 Photo of JIWY servo system.

The joints are equipped with DC motors and incremental encoders. JIWY
is controlled by a PC equipped with a National Instruments I/O card
(PCI-6024E, 2000), an analogue joystick, and supplied with a power-
supply/amplifier/circuit box (I/O box) for driving the motors and
converting sensor and actuator signals. The PC is connected to the
internet via a LAN network. Details on JIWY can be found in Jovanovic
et al (2002).

An overview of the hardware structure of one control loop is given in
Figure 6-15.

 6. CSP concepts applied to control systems

244

Figure 6-15 Hardware structure of one motor control system.

6.6.1 Motion control description

JIWY uses incremental encoders and therefore the centre position for
each axis has to be determined by alignment. It is required that the outer
boundaries of each axis are determined first in order to calculate the
centre position of the axis. Each joint rotates to its end-stop, at which
point the process terminates. It remembers the maximum value. The next
process rotates the joint with constant velocity to the other end until it
reaches the end-stop. Again this process remembers the maximum value.
Subsequently, the main servo position motion controller takes over. It
uses the two maximum values from the alignment processes to
determine the centre position of the joint. The main controller can be
stopped by the user by pressing a specific button on the joystick. After
the main controller is stopped by the user, it is required that the joints
return back to their centre position as a safe state. This process is called
homing. After homing, the motors will be disabled.

Encoder

PC-based
Control
System

PWM-
generator

Quadrature
converters

Power
amplifier

DC
Motor

Counter

I/O CARD
PCI-6024E

I/O BOX

Maxon ADS 50/5

LS7084

SETUP

HEDS5540-A11

Maxon
DC 15

Analog
Joystick

6.6 JIWY, a robotic servo system

245

6.6.2 Process architecture

The process architecture of JIWY has been designed using CSP diagrams.
The components were derived from the description (specification) in
Section 6.6.1. Some freedom of viewing CSP diagrams, with slightly
different degrees of detail, is illustrated.

Modes of operation

The functional description, as described in Section 6.6.1, gives rise to four
control modes per joint. Each mode identifies a separate process. These
processes are depicted in Figure 6-16 and Figure 6-18.

Figure 6-16 shows the communication diagram representing the data-
flow between these four processes. Each process has an input-channel
(feedback_horizontal) that provides the angle of the joint and an output-
channel (control_horizontal) that steers the motor. The main controller
motionControlH receives the joystick set-points and joystick buttons from
the channels joystick_horizontal and joystick_buttons.

Figure 6-16 Communication diagram of the horizontal loop controller.

alignLH
:VelocityControlLeft

Horizontal

motionControlH
:ControlHorizontal

alignRH
:VelocityControlRight

Horizontal

homingH
:HomingHorizontal

leftmax_h:double

rightmax_h:double

control_horizontal
:double @ Tsh

feedback_horizontal
:double @ Tsh

joystick_horizontal
:double @ Tsh
joystick_buttons

:int @ Tsh

 6. CSP concepts applied to control systems

246

The names feedback_horizontal, control_horizontal,
joystick_horizontal, and joystick_buttons identify process-interface
elements or ports of the parent process. Here, the parent process is the
main process or the top network builder. These names are used inside
the parent process and are connected to communication relationships
outside the process. Suffix “@ Tsh” specifies that we deal with a sampled
data system, where the samples arrive at equidistant moments in time.
Clearly, each sample must be processed before the next arrival. This
suffix means that the external channels are triggered on sampling period
Tsh for the horizontal control loop. Tsv is the sampling period for the
vertical control loop. The CSP diagram for the vertical control loop is not
shown here as it is similar to the horizontal control loop. This
information is used to set up timing in the process architecture, see
Section 6.6.4.

Figure 6-17 Communication diagram with port detail.

Figure 6-17 shows the necessary data-flow or dependencies between the
inputs, outputs, and the processes. In order to determine the correctness
of connectivity, ports labels can be shown next to the processes. This is
illustrated in Figure 6-17. The diagram becomes more difficult to read for
the user and for outsiders. Detail reduction by hiding port labels

alignLH
:VelocityControlLeft

Horizontal

motionControlH
:ControlHorizontal

alignRH
:VelocityControlRight

Horizontal

homingH
:HomingHorizontal

leftmax_h:double

rightmax_h:double

control_horizontal
:double @ Tsh

feedback_horizontal
:double @ Tsh

joystick_horizontal
:double @ Tsh
joystick_buttons

:int @ Tsh

feedback

max

feedback

leftmax

feedback

feedback

control

control

control

control

rightmax

max

rightmax

leftmax

joystick_button

joystick_axis

6.6 JIWY, a robotic servo system

247

improves the readability of the diagram. This illustration shows that the
complexity or readability of CSP diagrams comes from the user style (or
lay-out) and the amount of detail that is shown by a CSP diagram. The
user should be able to toggle the visibility of port labels, i.e. switching
between Figure 6-17 and Figure 6-16. Therefore, design tool support is
inevitable.

The communication types of ports at each end of a communication
relationship should be of the same type, otherwise they are incompatible
and cannot be connected. The type indication :double or :int have been
hidden from the ports in this example since they can be derived from the
label-type of the arrow. Thus, derivatives can also be hidden in order to
make CSP diagram readable.

Figure 6-18 Composition diagram of the horizontal loop controller.

Figure 6-18 shows the compositional diagram which depicts the control-
flow between these processes (modes). Identifiers for sequential
relationships between processes and primitive processes are not really
necessary. Here, we add one identifier seq_h which identifies the
sequential construct. It can be found in the resulting code. Each joint

alignLH
:VelocityControlLeft

Horizontal

motionControlH
:ControlHorizontal

alignRH
:VelocityControlRight

Horizontal

homingH
:HomingHorizontal

seq_h

par

… vertical joint …

 6. CSP concepts applied to control systems

248

operates in parallel, hence there is a parallel interrelationship between
the horizontal and vertical processes. The little circle at the end of the
parallel relationship denotes a parenthesis, which determines a group of
control processes for the horizontal joint. The parenthesis symbol forms
one anonymous parent process containing child processes. This is similar
for the vertical joint, which is not shown in Figure 6-18. The parameters
for the horizontal joint are slightly different than the vertical joint. We
will mainly restrict ourselves to the horizontal joint.

This composition diagram is like an abstract state-transition diagram,
where the processes represent states of operation (modes) and their
termination represent the transition between these states (modes).

Motion controller process

The motionControlH process in Figure 6-16 is the main controller that
receives the set-points from the joystick. This process terminates when
the stop button on the joystick is pressed. This process contains a 20-
process servoHorizontal which computes the control law for each
sample. See Figure 6-19 and Figure 6-20. The looping is specified by the
loop process.

Figure 6-19 Communication diagram of motionControlH.

In Figure 6-19, communication relationships between the external ports
and the 20-process servoHorizontal are specified. The 20-process ports

servoHorizontal
:PositionControllerHorizontal

20Process

[status != 2]

control

joystick_axis

?

joystick_buttons:int

feedback

chanin[2]

chanout [1]

status=0:in

! zero=0.0
:double

leftmax

rightmax

chanin[0]

chanin[1]

chanin[3]

6.6 JIWY, a robotic servo system

249

are rendered by indexed channel array names. This indexing rises from
the sub-model; chanin[i] → u[i] and y[j] → chanout[j].

Two local communication relationships, status and zero, have been
added. status holds the status of the joystick buttons when it is pressed.
The μ-process will continue repeating the alternative relationship until
status is 2. zero is a constant value 0 in the communication diagram.
Therefore these variables are declared and initialized with the default
value in the code.

Figure 6-20 Composition diagram of motionControlH.

The alternative construct will wait until the channels feedback or
joystick_buttons become ready. See Figure 6-20. The construct will select
the controller when feedback is ready to communicate and when the
joystick button is not pressed. If the joystick was pressed and feedback is
not yet ready to communicate, then the joystick buttons will be read. If
both the joystick button was pressed and the feedback is ready then
reading the buttons will preceed the feedback. In case the stop button
was pressed (status != 2), the loop controller terminates and a number
zero will be sent to the actuator in order to release the steering of the
joint. Successively, the entire process terminates and the joint resides in a
safe state. Identifiers for sequential relationships between processes and
primitive processes are not necessary.

Alignment controller process

Each alignment mode is based on a velocity controller. Process alignLH
has been depicted in Figure 6-21 and Figure 6-22. This process contains a
20-process vleftHorizontal and a loop construct which repeats itself until

servoHorizontal
:PositionControllerHorizontal

20Process

[status != 2]

?

joystick_buttons
[true]

feedback [true] !

prialt

 6. CSP concepts applied to control systems

250

stop is true. The variable stop becomes true when the end-stop has been
reached. This is specified by the 20-sim sub-model. Process alignRH is
identical to alignLH except that the motor rotates right.

Figure 6-21 Communication diagram of alignLH.

Figure 6-22 Composition diagram of alignLH.

Homing controller process

The homing controller uses the same position controller process as in the
motion controller. This process requires a set-point that is set to the
centre position, i.e. zero. See Figure 6-23 and Figure 6-24. For a change
we hide the port names in Figure 6-23. The homing process stops when
the joint resides in a sufficiently small neighbourhood of the centre
position. This is measured within 10 sample periods.

vleftHorizontal
:VelocityControlLeftHorizontal

20Process

[!stop]

vleftHorizontal
:VelocityControlLeftHorizontal

20Process

stop:double

max

[!stop]

control

feedback

chanout[2]

chanout[1]

chanin[0]

chanout[0]

6.6 JIWY, a robotic servo system

251

Figure 6-23 Communication diagram of homingH.

Figure 6-24 Composition diagram of homingH.

6.6.3 Controller design

Separate from CSP diagrams, simulate-able models in 20-sim have to be
designed in order to determine the control laws. The 20-sim model
comprises all relevant dynamics of the system and the controller itself.
Simulations of the model can be found in (Lammertink, 2003).

Position controller

The position motion controller is the main operational mode of this servo
system. The model renders the context of the closed-loop system. The
context contains two servo-controlled axis and the joystick as a position

homingHorizontal
:PositionControllerHorizontal

20Process

[!stop]

!

homingHorizontal
:PositionControllerHorizontal

20Process

[!stop]

control

feedback

! zero=0.0 leftmax

rightmax

stop
:double

setpoint=0.0

 6. CSP concepts applied to control systems

252

set-point generator. Figure 6-25 presents the top-level block diagram of
this control mode for the horizontal joint. The diagram for the vertical
joint is similar. The joystick input for the x-axis is simulated by some
function as described in sub-model JoystickHorizontal. The ioHorizontal
sub-model models and simulates the hardware input/output interfacing
between the physical system and the control software. These sub-models
allow for a more realistic dynamic behaviour, which one can expect from
the real setup. The physical system is modelled by the sub-model
MotorHorizontal using bond graphs.

Joystick Controllers IO JIWY

Endstops_horizontal

PositionControllerHorizontalJoystickHorizontal IOHorizontal MotorHorizontal

20-sim 3.4 Viewer (c) CLP 2004

Figure 6-25 Top-level model of position motion controller in 20-sim.

The sub-model PositionControllerHorizontal is the software controller
that will be code generated by 20-sim as 20-processes using C++
templates. The controller PositionControllerHorizontal is described
using block diagrams in 20-sim. This is similar for
PositionControllerVertical, which may differ in parameters.

Alignment controller

The alignment determines the maximum angles of the joints. The
alignment is velocity controlled, whereby the end-stops must be detected
while the joint moves slowly and with constant speed. The top-level
block diagram of the alignment mode for the horizontal joint is given in
Figure 6-26.

6.6 JIWY, a robotic servo system

253

Controller IO JIWY

VelocityControlLeftHorizontal IOHorizontal MotorHorizontal

20-sim 3.4 Viewer (c) CLP 2004

Figure 6-26 Alignment mode for left rotation.

The sub-model VelocityContolLeftHorizontal is the controller that will be
code generated by 20-sim as 20-processes.

Homing controller

The homing controller HomingControllerHorizontal is almost identical to
PositionControllerHorizontal. See also Figure 6-25. The only difference is
that the joystick input is overwritten by value 0 and enforces the joint to
move to the centre position. This is similar for homing controller
HomingControllerVertical.

6.6.4 Implementation

The implementation of the top network builder and the sub-processes are
described in Appendix D.7. The translation of CSP diagrams to C++ is
similar as with ARTY in Appendix D.6.

Both top network builders from ARTY and JIWY show a common
pattern of construction (template). Both templates are divided in the
following parts, as shown in Listing 6-1.

void main() {

 //--- external channels declarations

 ...

 //--- internal channels declarations

 ...

 //--- processes declarations

 ...

 6. CSP concepts applied to control systems

254

 //--- compositional construct declaration

 ...

 //--- set timed events

 ...

 //--- run the process

 ...

 //--- delete all instances

 ...

}

Listing 6-1 Template of a network builder.

This assignment showed that the quality of the program was related to
the process architecture and the quality of the link drivers. Test-runs
simulated that the process architecture was correct. Link drivers for the
National Instruments I/O card (PCI-6024E, 2000) were developed for
Linux, RTAI, and DOS (Stephan, 2002). Once these link drivers were
correct on all platforms, the program was portable between these
platforms without changing the top network builder.

It was observed that students involved in these projects had modest
knowledge and experience in programming. They appreciated the CSP
concepts from which they understand the ins and outs of embedded
system programming at an appropriate level of abstraction. The
methodology eliminated programming pitfalls which increased the
development speed. Above all, they appreciate that they can build
embedded and real-time software by following the guidelines of the CSP
concepts.

6.6.5 Tests

Once the CSP diagrams and the 20-sim model were completed, the
generated controller software worked the first time right.

The sensitivity of detecting the end-stops had to be fine-tuned in the
controller design in order to reduce the force on hitting the end-stops.

6.7 Conclusions

255

JIWY has been successfully used for demonstrations. It was observed that
the dynamics of JIWY was close to the dynamics of the 20-sim models. To
protect the motors, the current to the motors was limited to 1.5A.

The control software has been tested in DOS and in RTAI. RTAI and
Linux offered the ability to use the webcam and internet services. Both
platforms worked equally well.

6.7 Conclusions
The proposed methodology demonstrates a sound foundation for
systematic designing and implementing control software on embedded
control systems. It has been demonstrated that this methodology applies
to laboratory setups and to DSP-based embedded computer systems. The
graphical modelling language has been used to design the process
architecture of the control software. The resulting CSP diagrams were
essential in describing and understanding the desired behaviour of the
software and hardware. Unfortunately no design tool was present yet to
design CSP diagrams or to translate CSP diagrams to a code framework.
The translation of CSP diagrams to code was manually done in a
straightforward and systematic way which eliminated surprises and
simplified the implementation. The code is documented with CSP
diagrams.

The aspects of simplicity, portability, and generality that were mentioned
in Section 4.2.4 have been demonstrated.

The simplicity, as a result of applying the occam’s razor, resulted in a
compact and coherent set of graphical notations, methods, and
constructs. Redundancy has been minimized in this set without reducing
flexibility. The proposed methodology comprises the necessary
fundamental concepts for developing concurrent software. Simplicity
comes from abstraction, semantical consistencies between design and
code, and rapid prototyping through plug and play. This significantly
decreased the development time of the software, because the user priory
knows exactly where to put code in which processes or objects.

 6. CSP concepts applied to control systems

256

The portability of the applications comes from the channel concept and
the small set of processor-specific methods. The channel concept makes
the applications highly hardware independent. Each different platform
requires a different set of link drivers. The processor-specific methods
have been successfully ported to the following processors that were used
by the laboratory of Control Engineering and the laboratory of Signals
and Systems:

• Texas Instrument TMS320F240 DSP (TMS320F2000 series)
(Texas Instruments, 1996)

• Texas Instrument TMS320C6711 DSP (TMS320C6000 series)
(Texas Instruments, 1999)

• Analog Devices ADSP-21992 DSP (ADSP 2199x series)
(Analog Devices, 2003)

• Intel i386 series microprocessors
(Intel, 1996)

Generality is demonstrated by translating the CT object model to
different programming languages, different operating systems, and to
different CPUs. The methodology abstracts away from from low level
technical issues; the low level technical issues are well-ordered by using
CSP diagrams. The approach of designing and implementing the process
architectures of ARTY and JIWY are very similar. Design patterns easily
map on the underlying hardware. Also, 20-sim integrated nicely in this
methodology. There were no engineering surprises that complicated the
designs or implementions. An important observation was that the
outcomes of these projects were predictable early in the design phase.
CSP diagrams and CT offered the right paradigm to deal properly with
sophisticated concurrent applications on embedded computer systems.

C H A P T E R 7

Discussion
7 Discussion

7.1 Conclusions
A methodology for building embedded real-time software for
heterogeneous embedded control systems is developed. The proposed
methodology comprehends a foundation based on CSP concepts, which
deals with the technical “how to’s” for building concurrent software. The
foundation deals with common sources of complexities in programming
concurrent software, such as multithreading, interrupt handling,
exception handling, inter-processor communication, priority scheduling,
reactivity, responsiveness, safe-guarding and fault-tolerance, etc. These
technical issues are elevated to a high level of abstraction. The abstraction
simplifies the design of embedded real-time applications and their
implementation in software and it simplifies the mindset of the user. The
proposed methodology allows the user to focus on the control
application at hand rather than spending time on difficult and low level
technical issues early in the development phase.

The proposed methodology comprises two ingredients:

1. A graphical modelling language is developed for creating concurrent
designs, called process architectures. The language captures the
CSP concepts by a graphical notation which one can use to
specify, design, and to program process architectures for
embedded real-time systems. The resulting designs are called
CSP diagrams.

 7. Discussion

258

2. A CSP object model (CT) is developed that implements the CSP
concepts using object-oriented techniques and can be
implemented in object-oriented programming languages. The
results are CSP libraries for Java, C and C++. Hence, this proposed
methodology shows that the CSP concepts offer a process-
oriented paradigm which marries well with object-orientation.

The graphical modelling language and the CT object model provide a
foundation to specifying, designing, and implementing process
architectures of control applications. This foundation is an important
provision for building tool support. The CSP concepts bring about well-
defined, distinct, and coherent concerns. This leads to abstraction,
complexity reduction, and complexity absorption. The continuity and
consistency of concurrency between the different phases in the
development trajectory are guaranteed by model checking. The results of
this methodology embrace what-you-see-is-what-you-get. Consequently,
this methodology allows for rapid prototyping and round-trip
engineering.

Process architectures capture hierarchies of processes, communication
between processes, the role of processes, their specific execution order,
and timing. The graphical modelling language divides the relationships
between processes into communication relationships and composition
relationships. This relationship-oriented design approach allows for
scalable designs and different views. A CSP diagram consists of two
distinct views, respectively the communication diagram and the
composition diagram. Each diagram describes a different concurrency
concern in the software design trajectory. The collaboration between both
types of relationships provide valuable information about their
compositions that is useful to determine design conflicts, such as
deadlocks, livelocks, and priority inversion problems in a process
architecture. This information can determine the exact type of
communication (e.g. rendezvous, buffered, sub-sampling, and super-
sampling) between processes necessary to solve design conflicts or to
optimize the performance of the process architecture in a systematic way.
Composition diagrams can also be traced for various design decisions,
which may be in conflict with the specification or mind set of the user.

7.1 Conclusions

259

Thus, CSP diagrams incorporate guidance for the user to avoid design
and coding errors.

The graphical modelling language does not prescribe styles for designing
CSP diagrams. The user can design complex diagrams that are
unreadable to others. Thus, the user is responsible for the readability of
the diagrams.

The design process is guided by design rules, such as

• Compositional analysis rules—useful for analyzing compositional
CSP constructs. Compositional analysis rules are used for

o determining the operators on hidden interrelationships,

o for writing ambiguous or unambiguous algebraic
expressions,

o and for detecting specification conflicts.

• Reallocation rules—rules for reallocating relationships with
another possibly nearest process, while preserving the algebraic
expression. This allows for a free topology of processes.

• Balancing cycles—technique that ensures a balanced cycle of
correct parenthesizing indexes. A design must be consistent
when viewed from different angles, i.e. reading a CSP diagram
starting from different processes and possibly in different
directions.

These rules offer analysis approaches that guarantee consistency and
correctness, such as

• Specification analysis—finding specification conflicts whereby
relationships are in contradiction in the design.

• Deadlock analysis—finding deadlock by searching for sequential
conflicts between primitive communication processes.

• Priority inversion analysis—finding priority inversion problems
by searching for priority conflicts between processes.

This research showed that the CSP concepts reach further than the good-
old transputer technology. The CSP concepts provide theoretical and

 7. Discussion

260

pragmatic solutions to complex problems in embedded software
engineering. This methodology comprises several enhancements which
are essential in embedded real-time software. The enhancements are:

• Shared channels—data channels or call channels can be shared by
multiple producers/ consumers and clients /servers.

• Internal and external data channels—internal data channels
transfer data (i.e. primitive data types or objects) via shared
memory and external data channels transfer data via hardware
devices. A process cannot distinguish between an internal or
external data channel.

• Buffered data channels—primitive data types or objects can be
passed and temporarily stored in the channel via some FIFO,
sub-sampling, or super-sampling queue.

• Call channels—high level channels for requesting methods on a
server process.

• Barrier—performing a complex communication process as a
layered process consisting of communicating processes via
channels.

• Notion of priorities—support for preference priorities,
propagation of priorities, and fair scheduling.

• Improved parallel construct—supports nested and compositional
priorities and scheduling set up by the PAR and PRIPAR
compositions.

• Improved alternative constructs—the decisions made by the ALT
and PRIALT can be influenced by the priorities of alting
processes (priority propagation imposed by the surrounding
PAR/PRIPAR composition).

• Exception handling—escaping from exceptions and gathering
exceptions to be handled.

• Timing—postponing events in untimed CSP models.

It has been demonstrated that this methodology works in practice. The
use of CSP diagrams were essential in describing and understanding the
desired behaviour of the software for the control systems ARTY and

7.2 Suggestions for future research

261

JIWY in Chapter 6. A design tool was in development and unfortunately
the tool was not mature enough for designing CSP diagrams or to
translate CSP diagrams to a code framework. The translation of CSP
diagrams to code was manually done in a straightforward and
systematic way which eliminated surprises and simplified the
implementation. A prototype design tool is under construction by
Jovanivic (2001)

The aspects of simplicity, portability, and generality have been
demonstrated. The simplicity comes from abstraction, semantically
consistencies between CSP concepts and rapid prototyping through plug
and play. The simplification decreased the development time of the
software without being an expert in programming embedded systems.
The portability of the applications comes from the channel model, which
makes the applications highly hardware independent. Each different
platform requires a different set of link drivers. Generality is
demonstrated by translating the CT object model to different
programming languages, to different operating systems, and to different
CPUs.

7.2 Suggestions for future research
A software design tool is inevitable in order to truly benefit from CSP
diagrams. The prototyped design tool that is currently in development
can do a fraction of the possibilities that CSP diagrams can offer. The
software design tool can generate concurrent frameworks for various
software engineering tools. The integration or coupling of such a
software design tool with other tools requires further investigation.

The graphical modelling language does not prescribe how process
architectures must be designed. It is very well possible that the user
models unreadable CSP diagrams. It shoulds be investigated in what
way the software design tool can impose a systematic design process,
which results in readable designs.

 7. Discussion

262

The model-checker FDR cannot check the real-time performance of
process architectures, except for deadloack and livelock. For example,
FDR does not support priorities and timing. Performance analysis should
determine whether or not the process architecture suffers from starvation
or other performance problems. Performance analysis takes priorities
and the timing parameters into account. Performance analysis was not
part of this research. A performance analysis tool should be investigated.

CSP diagrams marry well with block diagrams. Therefore, CSP diagrams
should be used for designing hybrid systems. This requires research in
the field of control theory for which CSP can describe the interaction
between discrete and continuous-time systems. This is more promising
than using traditional state diagrams, which tend to be only applicable
for small control problems.

The exception construct in CSP diagrams and in CT showed to be useful
for the applied control applications. However, the semantics of the
exception construct should be reconsidered. It should be investigated if
the semantics of the exception operator can get closer to the semantics of
the interrupt operator. The implementation of such exception construct
may not be as complicated as was suggested in this thesis.

The CT library has been tested by test programs. These tests showed
appoved behaviour. However, this does not prove that everything is
correct and perhaps something slipped one's mind. In order to gain trust
in the implementation and semantics of the CSP libraries, it is required
that the CSP libraries are model-checked using CSP. A professional tool
is available, called the Failure-Divergence-Refinement tool (FDR, 2004).
Model checking should prove that the semantics of the CT elements are
conform to the theory.

The use of CSP diagrams could improve the concurrency model in the
UML. Modelling concurrency in the UML is complex due to
discontinuities between the different views. CSP diagrams could add a
new view to the UML that integrates with the other views in the UML.
This approach can guarantees safe and reliable multithreading without
dealing with threads directly. This addition of CSP diagrams to the UML
may result in real-time UML for embedded systems.

A P P E N D I X A

The CSP Language
A The CSP Language

A.1 Introduction
CSP stands for Communicating Sequential Processes, which was introduced
by C.A.R. Hoare in 1978 (Hoare, 1978). The first textbook was published
in 1985 (Hoare, 1985). Since then CSP, as a language, has significantly
evolved. Roscoe (1998) updated CSP and published it in 1998. This
version is referred to as CSP II. This version has been used in this thesis.
CSP remains untimed because it abstracts away from notion of time. A
timed CSP variant exists, which was developed by Schneider (2000). This
extension to untimed CSP is not used in this thesis.

This appendix outlines the syntax and semantics of untimed CSP as it is
now used. An illuminating and brief tutorial was written by Martin and
Jassim (1997). This text has been used in this appendix to give an
overview of CSP. A complete outline of the syntax and semantics of CSP
can be found in (Roscoe, 1998; Schneider, 2000).

A.2 Evolving Theory
CSP encompasses the fundamental aspects of concurrency. From this
point the theory is evolving with extreme caution for correctness.
Extensions to untimed CSP exists which enhance the use of CSP for
particular areas in software design. For example, a timed CSP variant

264 A The CSP Language

was developed, which allows for reasoning about timing behaviour (e.g.
performance, timeouts, delays) in processes. Another variant is
prioritized CSP which was developed by Lawrence (1998) which includes
notion of priorities as was found in the occam programming language;
i.e. the PRIALT and PRIPAR processes.

The textbooks by Nissanke (1997) and Schneider (2000) illustrate how
CSP can be applied to real-time systems. In Maggee & Kramer (1999) CSP
provides a systematic and practical approach to designing, analyzing and
implementing concurrent programs in Java.

A.3 The CSP Language

Basic Syntax and Informal Description

The basic syntax of CSP is described by the following grammar.

:

;
|

()
name

Process STOP

SKIP
event Process

Process Process
Process alph alph Process

Process Process
Process Process
Process Process

Process event
f Process

==

→

|[]⏐
|||

Here event ranges over a universal set of events, ∑, alph ranges over
subsets of ∑, f ranges over a set of function names, and name ranges over
a set of process names.

A.3 The CSP Language

265

A process describes the behaviour of a component in terms of the events
in which it may engage. The simplest process of all is STOP. This is the
process which represents a deadlocked component. It never engages in
any event. Another primitive process is SKIP which does nothing but
terminate successfully; it only performs the special event √, which
represents successful termination.

An event may be combined with a process using the prefix operator,
written →. The process bang→UNIVERSE describes a process which first
engages in event bang then behaves according to process UNIVERSE.
This new process can be given a name CREATION as in

CREATION bang UNIVERSE= →

Processes may be defined in terms of themselves using the principle of
recursion. Consider a process to describe the ticking of an everlasting
clock.

CLOCK tick CLOCK= →

CLOCK is a process which performs event tick and then starts again. This
is a somewhat abstract definition. No information is given as to the
duration or frequency of ticks. We are simply told that the clock will
keep on ticking. A duration of the tick can be specified with timed CSP
(Davies and Schneider, 1995). The recursion notation is commonly
extended to a set of simultaneous equations where a number of processes
are defined in terms of each other. This is known as mutual recursion.

There are a number of CSP operations which combine two processes to
produce a new one. The first of these that we shall consider is sequential
composition.

;UNIVERSE EXPAND CONTRACT=

Is the process which first behaves like EXPAND, but when EXPAND is
ready to terminate it continues by behaving like CONTRACT. However it
may be possible that EXPAND will never terminate.

266 A The CSP Language

It is rather more complicated to compose two processes in parallel than
in sequence. It is necessary to specify a set of events for each process,
known as its alphabet. The process denoted

}| }

PANTOMIMEHORSE

FRONT forward,backward,nod forward,backward,wag BACK

=

|[{ {]⏐

represents the parallel composition of two processes: FRONT with
alphabet }forward,backward,nod{ and BACK with alphabet

}forward,backward,wag{ . Here each behaves according to its own
definition, but with the constraint that events which are in the alphabet
of both FRONT and BACK, i.e. forward and backward, require their
simultaneous participation. However they may progress independently
on those events belonging solely to their own alphabet, If a situation
were to arise where FRONT could only perform event forward and BACK
could perform event backward then deadlock would have occurred. Note
that a pantomime is a traditional British theatrical entertainment which
often features a “horse” consisting of two actors in a single costume, one
of whom plays the front legs and head while the other plays the hind
legs and tail.

Parallel composition may be extended to three or more processes: given a
sequence of processes 1,.., nV P P= with corresponding alphabets

1 ,.., nA A we write their parallel composition as

() ()
1

,
n

i ii
PAR V P A

=
=

Note that it is implicitly assumed that the termination event √ requires
the joint participation of each process Pi, whether or not it is included in
their process alphabets.

An alternative form of parallel composition is interleaving, where there is
no communication between the component processes. In the parallel
combination

 BRAIN MOUTH⏐⏐⏐

A.3 The CSP Language

267

The two processes, BRAIN and MOUTH, progress independently of each
other and no cooperation is required on any event, except of √, the
termination event. Any other actions which are possible for both
processes will only by one process at the time. Interleaving is a
commutative and associative operation and so we may extend the
notation to various indexed forms, such as

1 :
,

n

i xi x X
P P

=
⏐⏐⏐ ⏐⏐⏐

A useful feature of CSP is the ability to describe nondeterministic
behaviour, which is where a process may operate in an unpredictable
manner. The process

 BUFFER TWOPLACE THREEPLACE=

may behave either like process TWOPLACE or like process
THREEPLACE, but there is no way of telling which in advance. The
purpose of the operator is to specify concurrent systems in an abstract
manner. At the design stage, there is no reason to provide any more
detail than is necessary and, where possible, implementation decisions
should be deferred until later.

This operation is known as internal choice. CSP also contains an external
choice operator which enables the future behaviour of a process to be
controlled by other processes running along side it in parallel, which,
collectively, we call its environment.

The process

 MICROWAVE DEFROST COOK=

may behave like DEFROST or like COOK. Its behaviour may be
controlled by its environment providing that this control is exercised on
the very first event. If an initial event button1 is offered by DEFROST that
is not an initial event of COOK, then the environment may coerce
MICROWAVE into behaving like DEFROST, by performing button1 as its
initial event. If, however, the environment were to offer an initial event
that is allowed by both DEFROST and COOK then the choice between
them would be nondeterministic.

268 A The CSP Language

Both the choice operators may be extended to indexed forms. We write

 x:A xx P→

To represent the behaviour of a process which offers any event of a set A
to its environment. Once some initial event x has been performed the
future behaviour of the process is described by the process Px. However,
the process

 x:A xx P→

offers exactly one event x from A to its environment, the choice being
nondeterministic.

Sometimes it is useful to be able to restrict the definition of a process to a
subset of relevant events that it performs. This is done using the hiding
operator(\). The process

\CREATION bang

behaves like CREATION, except that each occurrence of event bang is
concealed. Note that it is not permitted to hide event √.

Concealment may introduce non-determinism into deterministic
processes. It may also introduce the phenomenon of divergence. This is a
drastic situation where a process performs an endless series of hidden
actions. Consider, for instance, the process

\CLOCK tick

which is clearly a divergent process. It is conventional to extend the
notation of P\A, where A is a finite set of events.

Finally let us briefly consider process relabelling. Let f be an alphabet
transformation function :f ∑ → ∑ , which satisfies the property that only
finitely many events may be mapped onto a single event. Then the
process ()f P can perform the event ()f e whenever P can perform event
e. As an example consider a function new which maps tick to tock. Then
we have

A.3 The CSP Language

269

() ()new CLOCK tock new CLOCK= →

Denotational Semantic

The meaning of a CSP process is defined in terms of the circumstances
under which it might deadlock or diverge. This is the Failures-Divergences
model.

A trace of a process P is any finite sequence of events that it may initially
perform. A divergence of a process is a trace after which it might diverge.
A failure of a process P consists of a pair (s,X) where s is a trace of P and X
is the set of events if offered to P by its environment after it has
performed trace s, might be completely refused.

Each CSP process is then uniquely defined by a pair of sets (F,D),
corresponding to its failures and divergences. The failures and divergences
of the fundamental CSP terms are defined by equations such as

() { }

() { }

() (){ }
() () { }{ }

() () (){ }
,

 , ,

divergences STOP

failures STOP

divergences x P x s s divergences P

failures x P X X x

x s X s X failures P

=

= 〈〉 × ∑

→ = ∈

→ = 〈〉 ⊆ ∑−

∪ ∈

P

A complete set of equations can be found in (Roscoe, 1998). These
particular equations define the meaning of STOP and the event-prefix
operator →. First we are told that STOP does not diverge, but refuses to
perform any event whatever set of events is offered to it. Then we are
told that the divergent traces of x→P are the divergent traces of P which
event x prefixed to them, and the failures of x→P to be failures of P with
x prefixed to the trace of each failure, together with parings of the empty
trace with all subsets of ∑ which exclude x.

270 A The CSP Language

This model is also used for formal reasoning about the behaviour of
concurrent systems defined by CSP equations. There is a natural partial
ordering on the set of all processes given by

() ()1 1 2 2 1 2 1 2, ,F D F D F F D D⇔ ⊇ ∧ ⊇

The interpretation of this is that process P1 is worse than P2 if it can
deadlock or diverge whenever P2 can. This partial ordering is very
important to the stepwise refinement of concurrent systems. Starting
from an abstract nondeterministic definition, details of components may
be independently flashed out whilst preserving important properties of
the overall system such as freedom from deadlock and divergence. The
FDR tool of Formal Systems Europe (FDR, 2004) can automatically verify
this refinement relation in the failures-divergences model.

A process P is deadlock-free if there is no trace after which it might
refuse to perform any event, i.e. ∃ () (),s s failures P• ∑ ∈ . It is divergence-
free if it has an empty set of divergences. A particularly important point
to stress is that when a network of CSP processes is composed in parallel
it becomes a single CSP process. So these definitions apply equally to
parallel networks of processes as they do to single sequential processes,
for which deadlock and divergence are not usually a problem.

Algebraic Semantics

From the failures-divergences model, a complete set of algebraic laws can
be deduced, which govern CSP processes, for instance

() ()

() ()

() ()
() () ()

() () ()

; ; ; ;

; ;

P Q R P Q R

a P Q a P Q

P A B Q Q B A P

P A B C Q B C R P A B Q B C R

P Q R P Q P R

P Q R P Q P R

P STOP P

=

→ = →

=

∪ = ∪

=

=

=

|[|]⏐ |[|]⏐

|[|]⏐ |[|]⏐ |[|]⏐ |[Α |]⏐

A.3 The CSP Language

271

There are many more such rules, but there is insufficiently room for their
inclusion here. The rules are used to derive correctness properties of CSP
systems using algebraic manipulation. See (Roscoe, 1998) for more
details.

Operational Semantics

So far two ways of looking at communicating processes have
encountered: firstly as algebraic expressions and secondly in terms of
abstract mathematical sets based on their observable behaviour. There is
no obvious way of seeing from either of these representations how CSP
might be realized on a machine. A more concrete approach is given by
operational semantics. The operational semantics of CSP is a mapping
from CSP expressions to transition systems. For example, Figure A-1
illustrates the transition system for the process

()a b STOP c STOP→ → → .

Figure A-1 CSP Transition System.

The behaviour of a process predicted by its failures and divergences will
be the same as that which can be observed of its operational
representation. So we may use the operational semantics of CSP in order
to prove properties of process behaviour which are phrased in the

()a b STOP c STOP→ → →

b STOP c STOP→ →

a

STOP

b c

272 A The CSP Language

Failures-Divergences model. This feature turns out to be particularly
useful when the operational representation of a process is finite although
its failures and divergences are infinite, as is usually the case in practice.
Therefore this is the representation of processes which us used inside the
various CSP verification programs, such as FDR (2004) and Deadlock
Checker (Martin and Jassim, 1997).

Language Extensions

The core CSP syntax described above is really abstract, and lacks certain
useful features found in conventional sequential and parallel
programming languages. The extensions outlined below are useful for
writing more detailed specifications and may be defined in terms of the
core constructors.

Sometimes a process is defined with parameters, such as

() (), ,BUFF in out in out BUFF in out= → →

This is a process-schema, rather than an actual process. It defines a CSP
process for each combination of parameter values. CSP parameters may
be integers, real numbers, channels (representing events), sets, matrices,
etc.

A communication is a special type of event described by a pair c.v, where c
is the name of the channel on which the event takes place, and v is the
value of the message that is passed.

The set of messages communicable on channel c is defined

() { }.type c v c v= ∈∑

Input and output are defined as follows. A process which first outputs v
on channel c, then behaves like P is defined simply as

() ()! .c v P c v P→ = →

A.3 The CSP Language

273

Outputs may involve expressions of parameters such as () 2!P x c x Q= → .
The expressions are evaluated according to the appropriate laws.

A process which is initially prepared to input any value x communicable
on the channel c, then behave like ()P x is defined.

()() () ()()? .v:type cc x P x c v P v→ = →

It is usual for a communication channel to be used by at most two
processes at any time: one for input and the other for output. This
restriction, which is known as triple-disjointedness, is not enforced in the
modern version of CSP.

Another important aspect to real programming languages is the use of
conditionals. Let b be a Boolean expression (either true or false). Then

()" if else "P b Q P b Q

is a process which behaves like P if the value of expression b is true, or
like Q otherwise.

These extensions are especially useful for specifying fine detail during
the later stages of program refinement. At the design stage one should
tend to stick to more abstract, nondeterministic definitions of processes.
The deadlock issue will usually be addressed at this point. In this way
one can build robust programs for which deadlock-freedom cannot be
compromised by implementation decisions made at a later stage.

A P P E N D I X B

Processor-specific methods
B Processor-specific methods

CTC and CTC++ are written in 99% portable C/C++ and less than 1% is
processor-specific. The processor-specific methods must be programmed
for each different type of processor. The processor-specific methods have
been reduced to a minimal set of methods, which are categorized as
follows:

Context-switching specific methods

void Processor__startswitch(void);

Start the first process and hold the thread of control of the main
program.

void Processor__stopswitch(void);

Return the thread of control back to the main program.

void Processor__contextswitch(void);

Perform a context switch to the next process thread that is waiting
on the ready queue of the dispatcher.

void Processor__enterAtomic(void);

Enter an atomic region in which no interrupt or context switch may
occur.

276 B Processor-specific methods

void Processor__exitAtomic(void);

Leave the atomic region and allow interrupts and context switching.

void Processor__initiateStack(ProcessThread pt, unsigned int size ,

 void *run);

Allocate and initiate a stack for the process thread pt with specified
size and run pointing to the run method of a process.

int Processor__defaultStackSize(void);

Return a default stack size. Every process that is added to a parallel
or priparallel construct with method add(Process) will get a stack
with the default stack size. This stack size can be overridden with
method add(Process, stacksize) with stacksize is the new stack
size in CTC and CTC++.

Memory specific methods

Object Processor__malloc(unsigned int size);

Allocate memory of size and return the pointer to the allocated
memory. This method returns NULL if no memory can be allocated.

Void Processor__free(void *ptr);

Free allocated memory pointed as specified by ptr.

Void Processor__copy(Object src, Object dest, unsigned int size);

Copy the content of an object src to object dest. The size of the
memory block that will be copied is specified by size.

A.3 The CSP Language

277

Interrupt specific methods

int Processor__registerInterruptService(unsigned int irq,

 InterruptService is);

Register an interrupt service is to an interrupt with number irq.

int Processor__unregisterInterruptService(InterruptService is);

Unregister interrupt service is.

void Processor__irqEnable(void);

Allow interrupts.

void Processor__irqDisable(void);

Disallow interrupts.

Timer specific methods

void Processor__initiateTimer(void);

Initiate the hardware timer.

int Processor__readTimer(void);

Read the time latch.

void Processor__latchTimer(int value);

Set a new value in the latch of the timer.

void Processor__setTimer(int value);

Override the counter with a new value.

These methods are prototyped and documented in the source file
processor.c. These methods are private to the kernel and not publicly
available for the user. The classes ProcessThread and InterruptService
take care of some organization and are written in portable C. The timer

278 B Processor-specific methods

object is a sophisticated object that makes a 64-bits timer from a 16-bits
system real-time timer. 16-bit timers are commonly part of computer
systems. Usually, the system timer is coupled to the processor which
handles the timer interrupts. Therefore, the timer specific methods are
related to the Processor class.

A P P E N D I X C

The exception operator Δ
C The exception operator

C.1 Introduction
A theoretical model of a compositional exception operator is proposed in
this appendix. The semantics of the exception operator does not alter the
semantics of the CSP operators so that we do not have to redefine the
CSP operators .

C.2 Proposed exception handling in CSP
A process P can face an error on which it should not continue or the
process gets blocked forever waiting on an event that will never happen
due to an error in the system. In either case P will behave as STOP. A
process that behaves suddenly as STOP is often an undesired behaviour
in programs. One would like to escape from STOP and handle the error
at hand. Such an escape manifests exception handling.

CSP offers an interrupt operator that could be used to escape from STOP
on an internal event. The CSP interrupt operator is depicted as

 iP EΔ (1)

This process behaves as P and on the occurrence of internal event i this
process will behave as E. Event i is not part of the alphabets of P and E,

280 C The exception operator

i.e. i P Eα α∉ ∩ (Pα and Eα are the alphabets of P and E). The exception
in P or in the system can be represented as an internal event i which is
intercepted by the interrupt operator and performs a preemption from P
to E. Process E is the exception handler of P.

One problem with the interrupt operator is that process E does not know
about the different exceptions occurred in P and it does not know what
exceptions to handle. Another problem is that the interrupt operator is
difficult to implement in software with low performance costs and a
small memory footprint. Due to the preemption from P to E, the interrupt
operator should somehow release all channels that are being claimed by
the child processes in P. Hence, an exception should not cause deadlock
because an any-to-any channel was claimed and never released. In a
dynamic network of communicating processes the implementation is
even more complex. This management will be time consuming and it will
increase a significant amount of code.

We define an exception operator Δ that is a simplified version of the
interrupt operator Δi which is able to collect exceptions in the program.

The proposed exception operation is

 P EΔ (2)

This process behaves as P and on the occurrence of unhandled exceptions
it will behave as E. A process with unhandled exception behaves as
STOP for which the exception operator manifests an escape to the
exception handling process that handles the exception. A process with
handled exceptions is not in exception and does not require exception
handling.

The properties of the exception operator are

if is not in exception

if suffers from one or more unhandled exceptions

P P
P E

E P
⎧

Δ ⎨
⎩

 (3)

The exception operator defines in what way the CSP/CSPP operators
should cooperate with exceptions. This is orthogonal to the original
semantics of the CSP/CSPP operators. The arrow on top illustrates

C.2 Proposed exception handling in CSP

281

explicitly the priority difference between P and E; i.e. E is more urgent
than P on the occurrence of the exception. This direction can help tracing
design conflicts on exception handling in process architectures, as
discussed in Chapter 5. This exception operator treats an exception as an
event and as a state.

Unusual situations in the environment can affect the behaviour of
software. Such an unusual situation can be detected as an exception and
passed through (or thrown) by channels and barriers. The exception
affects the process when it reaches the point where it wants to
communicate with a corrupted (or poisoned) channel or barrier. This
may also include exceptions, such as a division-by-zero or null pointers,
which involve internal events. The proposed exception operator can
capture these kinds of exceptions.

As previously mentioned, exceptions can occur on communication with
channels or barriers. For example, consider the following process:

 ()c SKIP E→ Δ (4)

Event c denotes a channel-end or barrier-end, e.g. a channel-input c?x,
channel-output c!v, channel-call c.call, channel-accept c.accept, or a
barrier-sync c.sync. On the occurrence of an exception the environment
will refuse c and the environment will engage in event ex.c instead. Event
ex.c is hidden by the exception operator.

It is useful that the exception handler E knows the nature of the
exception in order to take the appropriate actions. The proposed
exception operator collects the trace of exceptions that have been raised
in P. The trace of exceptions is a shared set, called error, and is passed to

()E error .

 ()P E P E errorΔ = Δ (5)

The exception handler ()E error may use error to discover which
exceptions are involved and should be handled. After handling the
exception, the exception must be taken from the set error; i.e.

.error error ex c= −

282 C The exception operator

The expression behind the exception operator is described as follows:

() ()

()

?
,

;
\ ,

read error stop
readE errorEX P

P E write
error SKIP

stop
EXSET

⎛ ⎞→ →⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎧ ⎫⎛ ⎞⎜ ⎟⎜ ⎟ ⎪ ⎪⎜ ⎟Δ = ⎜ ⎟ ⎨ ⎬⎜ ⎟⎜ ⎟⎜ ⎟≠⎝ ⎠⎝ ⎠ ⎪ ⎪⎝ ⎠⎜ ⎟ ⎩ ⎭⎜ ⎟
⎝ ⎠

 (6)

with error EXCEPTIONS⊆ ∧ and error = as the initial state of this
process. Here, EXSET is a process that collects the set of exceptions. Its
read, write, and stop events are hidden from outside the exception process.
This process is defined as

 () ()()
()

? () ! ()
()

write e EXSET es e read es EXSET es
EXSET es

stop SKIP
⎛ ⎞→ →= ⎜ ⎟Δ →⎝ ⎠

 (7)

Event write is used to put an exception to the set and read is used to get
the set. Event stop will terminate EXSET.

Process ()EX P distinguishes between event c and event ex.c.

()()

()
{ }. after

() \ .
. ! .

ex cc EX P c
EX P ex c

ex c write ex c SKIP

⎛ ⎞→ Δ
⎜ ⎟=
⎜ ⎟→ →⎝ ⎠

 (8)

Here, ()c fs P∈ is the first step returning the first communication event of
P. ()EX P operates on the chain of prefixes and excludes termination
events . The recursive function ()EX P is used for tracing exception
events occurred in P. Process ()EX P may engage in ex.c with its
environment, but ex.c is hidden from other processes.

The environment decides to engage in event c or in event ex.c, but not
simultaneously. With this assumption we can replace the interrupt
operator with an external choice, as described in

()()

()
{ }

 after
() \ .

. ! .

c EX P c
EX P ex c

ex c write ex c SKIP

⎛ ⎞→
⎜ ⎟=
⎜ ⎟→ →⎝ ⎠

 (9)

C.3 Compositional semantics

283

This external choice operator can be efficiently implemented as discussed
in Chapter 5.

C.3 Compositional semantics
Process P can be any composition of simpler processes. It is important
that these compositions cooperate in gathering exceptions and pass
through these exceptions to an exception handler higher in the hierarchy.
This behaviour is part of the exception operator description, as will be
discussed next.

On the termination events of each process the set error must be checked
whether it is empty or not. In case error is not empty, the process has
unsuccessfully terminated and otherwise the process has successfully
terminated. This behaviour is described as

()
() ()()

;

; ?

EX Q R

EX Q read error EX R error SKIP

=

→ =
 (10)

SKIP is performed on the unsuccessful termination of Q and R is
performed on the successful termination of Q.

For the parallel composition we can write:

 () () ()EX Q R EX Q EX R= (11)

The parallel operator collects the exceptions from each branch in the set
error.

For the external choice composition we can write:

()
() ()()()
() ()()()

; ? . ()

; ? . ()

EX Q R

EX Q read error EX R ex fs Q error SKIP

EX R read error EX Q ex fs R error SKIP

=

⎛ ⎞→ ∈
⎜ ⎟
⎜ ⎟→ ∈⎝ ⎠

 (12)

This description implies that the choice operator will collect all
exceptions that occurred on the first event in the guarded processes. This

284 C The exception operator

is a desired behaviour since the choice operator cannot make a fair choice
due to exceptions on the first events of the guarded processes.

The prioritized parallel and prioritized choice operators have similar
expressions as their non-prioritized counter parts in respectively (11) and
(12). More generally, we can write the following expressions for ()EX P
for each CSP/CSPP operator:

The sequential process
0.. 1
; i

i n

P E
= −

⎛ ⎞
Δ⎜ ⎟

⎝ ⎠
 is

 ()()()
0.. 1 0.. 1

?; ;i i
i n i n

EX P read error EX P error SKIP
= − = −

⎛ ⎞
= → =⎜ ⎟

⎝ ⎠
 (13)

The parallel process
0.. 1

i
i n

P E
= −

⎛ ⎞
Δ⎜ ⎟

⎝ ⎠
 is

 ()
0.. 1 0.. 1

i i
i n i n

EX P EX P
= − = −

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 (14)

The alternative (choice) process
0.. 1

i
i n

P E
= −

⎛ ⎞Δ⎜ ⎟
⎝ ⎠

 for one recursion is

()

()

0
1.. 1

1.. 1

0 0

0

1.. 1 1.. 1

; ? . ()

; ? .

i
i n

i
i n

i i
i n i n

EX P P

EX P

EX P read error ex fs P error

SKIP

EX P

EX P read error ex fs P error

SKIP

= −

= −

= − = −

⎛ ⎞⎛ ⎞ =⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟
⎜ ⎟→ ∈⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟

⎛ ⎞ ⎛ ⎞⎜ ⎟→ ∈⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠
⎜ ⎟⎜
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (15)

C.3 Compositional semantics

285

with () () ()1 2 1
1.. 1

. . , . ,..., .i n
i n

ex fs P error ex fs P ex fs P ex fs P error−
= −

⎛ ⎞∈ = ∈⎜ ⎟
⎝ ⎠

The prioritized parallel process
0.. 1

i

i n

P E
= −

⎛ ⎞
Δ⎜ ⎟⎜ ⎟

⎝ ⎠
 is

 ()
0.. 1 0.. 1

i i

i n i n

EX P EX P
= − = −

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠
 (16)

The prioritized alternative (choice) process
0.. 1

i
i n

P E
= −

⎛ ⎞Δ⎜ ⎟
⎝ ⎠

 for one recursion

is

()

()

0
1.. 1

1.. 1

0 0

0

1.. 1 1.. 1

; ? . ()

; ? .

i
i n

i
i n

i i
i n i n

EX P P

EX P

EX P read error ex fs P error

SKIP

EX P

EX P read error ex fs P error

SKIP

= −

= −

= − = −

⎛ ⎞⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟→ ∈
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

⎛
⎜

⎛ ⎞ ⎛ ⎞⎜→ ∈⎜ ⎟ ⎜ ⎟⎜⎝ ⎠ ⎝ ⎠⎜
⎜
⎝

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎛ ⎞⎞⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎠⎝ ⎠⎝ ⎠

 (17)

with () () ()1 2 1
1.. 1

. . , . ,..., .i n
i n

ex fs P error ex fs P ex fs P ex fs P error−
= −

⎛ ⎞
∈ = ∈⎜ ⎟

⎝ ⎠

Nested exception handling is incorporated, as in

 ()()0 1 2 0 1 2
0..2

i
i

P E E E P E E E P E
=

Δ Δ Δ = Δ Δ Δ = Δ (18)

286 C The exception operator

C.4 Livelock and deadlock
An exception can cause a STOP indicating a livelock or deadlock for
which the exception operator does not manifest an escape. Consider the
following example,

 ()
{ }

()
d

e d P f d Q E⎛ ⎞→ → → → Δ⎜ ⎟
⎝ ⎠

 (19)

Assume event f fails and therefore the environment offers ex.f instead;
.error ex f= . The right hand side of will SKIP and will not engage in d.

The left hand side will block forever on d and consequently the entire
process behaves as STOP, as in

()

{ }
() ()after and .. e ex f

d
e STOP ex f SKIP E STOP SKIP E

STOP E STOP

⎛ ⎞→ → Δ ⎯⎯⎯⎯⎯→ Δ⎜ ⎟
⎝ ⎠
= Δ =

(20)

This is a correct behaviour. However, the desired behaviour is that E
takes over control so that the program can continue without deadlocking
or livelocking. A possible solution is

 () () ()()()()()e d P f d Q refuse d E→ → → → Δ Δ (21)

When f fails then .error ex f= and the inner exception handler performs
()refuse d , which is a function that will cause d to fail also. Successively,

the left hand process will fail on d and exception event ex.d will happen
instead. Then E will be performed with . , .error ex f ex d= .

() ()() () (), after e ex f and ex de ex d SKIP ex f SKIP E SKIP SKIP E

E

→ → → Δ ⎯⎯⎯⎯⎯⎯→ Δ

=

In order to avoid livelock or deadlock one should refine the design of the
process architecture with exception operators and ()|refuse channel barrier
functions. This technique is also known as poisoning channels or barriers.

A P P E N D I X D

Examples
D Examples

D.1 Producer/Consumer example
An example of a producer process and a consumer process connected via
a generic data channel is described in this section. The Producer class
defines the producer process that sends a value to the consumer process.
Figure D-1 depicts a class diagram of the producer/consumer
communication relationship. A channel is stereotyped with <<channel>>.
The channel input and output interfaces are stereotyped
<<channelinput>> and <<channeloutput>>. Stereotypes provide constraints
in UML diagrams for model checking.

Figure D-1 UML class diagram of a producer/consumer
communication relationship.

<<channel>>
Channel_of_Object

+ write(Object object) : Object
+ read(Object object : Object

ChannelOutput_of_Object

<<channelinput>>

ChannelInput_of_Object

<<channeloutput>>

<<process>>
Producer

+ run() : void
+ …

<<process>>
Consumer

+ run() : void
+ …

288 D Examples

The Producer class defines the producer process that sends a value to the
channel. See Listing D-1. The Consumer class defines the consumer process
that receives the value and prints it on screen. See Listing D-2. The
producer and consumer run in parallel, see Listing D-3 and Section 4.6.1.
Both processes terminate when they have communicated via the channel.

import csp.lang.*;

import csp.lang.Process;

import csp.lang.Integer;

class Producer implements Process

{

 ChannelOutput_of_Object chanout;

 int value = -1;

 Producer(ChannelOutput_of_Object channel) {

 chanout = channel;

 }

 public void run()

 throws ExceptionSet {

 Integer obj = new Integer();

 ...

 obj.value = value;

 chanout.write(obj);

 ...

 }

 public void setValue(int v) {

 value = v;

 }

}

Listing D-1 Producer class.

class Consumer implements Process

{

 ChannelInput_of_Object chanin;

 int value = -1;

 Consumer(ChannelInput_of_Object channel) {

 chanin = channel;

 }

 public void run()

D.2 Client/Server example

289

 throws ExceptionSet {

 Integer obj = new Integer();

 ...

 obj = chanin.read(obj);

 value = obj.value;

 ...

 System.out.println(“value = “+value);

 }

 public int getValue() {

 return value;

 }

}

Listing D-2 Consumer class.

In the consumer process the read(..) method has a double function. The
read(..) may use the specified obj argument to copy data in or if that
fails for some reason a clone is returned. The consumer has become
independent from the message delivery mechanisms pass-by-value or
pass-by-reference.

public static void main(String[] args) {

 Channel_of_Object channel = new Channel_of_Object();

 Parallel par = new Parallel(new Process[] {

 new Producer(channel),

 new Consumer(channel)

 });

 try {

 par.run();

 } catch (ExceptionSet es) {

 ... exception handling

 }

}

Listing D-3 Producer and consumer in parallel.

D.2 Client/Server example
In this section, the coding of a client process and a server process that
communicate via a call channel is shown. This example shows that a

290 D Examples

server process can have multiple interfaces. Each interface provides a
different view of services for different types of clients. Here, Server
implements two interfaces: OnOff and OtherService. The server process is
given in Listing D-4 and the two interfaces are given in Listing D-5 and
Listing D-6. Their implementations are not shown. The call channel is
defined by the MyCallChannel class and its relationships with other classes
and interfaces are shown in Figure 4-6.

import csp.lang.*;

import csp.lang.Process;

public class Server implements Process, OnOff, OtherServices

{

 MyCallChannel channel;

 public Server(MyCallChannel channel) {

 this.channel = channel;

 }

 public void run()

 throws ExceptionSet {

 ... perform server task

 channel.accept();

 ...

 }

 public void on() { ... }

 public void off() { ... }

 public XYZ calculate(..)

 throws ExceptionSet { ...; return ...; }

 public void add(..) { ... }

 public void remove(..) { ... }

 public void setGain(..) { ... }

 public double getGain() { ...; return ...; }

}

Listing D-4 The server process.

D.2 Client/Server example

291

Although these methods are publicly accessible they should only be
invoked when the process plays the role of a process instance (in
between runs) or otherwise only through call channels that offer these
services.

The interfaces OnOff and OtherServices are defined as:

public interface OnOff {

 public void on();

 public void off();

}

Listing D-5 The OnOff service interface.

public interface OtherServices {

 public XYZ calculate(..) throws ExceptionSet;

 public void add(..);

 public void remove(..);

 public void setGain(..);

 public double getGain();

}

Listing D-6 The OtherServices service interface.

The run() method is not part of call interfaces but belongs to the process
instance interface as specified by the Process interface in Listing 4-1.
Thus, a call channel does not implement the Process interface.

The class diagram of the client/server communication relationship is
given in Figure D-2.

The call channel is stereotyped with <<callchannel>>. The channel call
and accept interfaces are stereotyped <<channelcall>> and
<<channelaccept>>.

The call channel class is given in Listing D-7. MyCallChannel inherits
CallChannel and all interfaces. Each method has a constant tag that is
required for the accept(..) methods to let the server process know about
the method that was accepted and performed. The process argument is
the reference to the server process. This argument is usually this; the
server process itself. On acceptance the tag (or number) of the method

292 D Examples

that was performed is returned. The tag can be useful for implementing a
state machine.

Figure D-2 UML class diagram of the client/server communication
relationship with the server process implementing the
call interfaces OnOff and OtherServices.

The join(int method) synchronizes the caller (client) and callee (server).
On rendezvous, one thread of control will invoke the method on the
server process and both processes continue after fork(). This behaves as
if the server process performs the method in rendezvous.

import csp.lang.CallChannel;

public class MyCallChannel extends CallChannel

 implements OnOff, OtherServices {

 public static final int ON = 0;

 public static final int OFF = 1;

 public static final int CALCULATE = 2;

 public static final int ADD = 3;

 public static final int REMOVE = 4;

 public static final int SETGAIN = 5;

 public static final int GETGAIN = 6;

<<callchannel>>
MyCallChannel

<<process>>
Server

+ run() : void
+ on() : void
+ off() : void
+ calculate(int x, int y) : int
+ …

+ on() : void
+ off() : void
+ calculate(int x, int y) : int
+ …

<<channelaccept>>

CallChannelAccept

<<process>>
Client

+ run() : void
+ …

<<channelcall>>

OnOff, OtherServices

OnOff

<implements>

OtherServices

<implements>

+ on() : void
+ off() : void

+ calculate(int x, int y) : int
+ …

D.2 Client/Server example

293

 public void on() {

 join(ON);

 ((OnOff)process).on();

 fork();

 }

 public void off() {

 join(OFF);

 ((OnOff)process).off();

 fork();

 }

 public XYZ calculate(..)

 throws ExceptionSet {

 join(CALCULATE);

 XYZ object = ((OtherServices)process).calculate(..);

 fork();

 return object;

 }

 public void add(..) {

 join(ADD);

 ((OtherServices)process).add();

 fork();

 }

 public void remove(..) {

 join(REMOVE);

 ((OtherServices)process).remove();

 fork();

 }

 public void setGain(..) {

 join(SETGAIN);

 ((OtherServices)process).setGain();

 fork();

 }

 public double getGain() {

 join(GETGAIN);

 double value = ((OtherServices)process).getGain();

 fork();

 return value;

 }

}

Listing D-7 Call channel MyCallChannel class.

294 D Examples

The CallChannel class implements a few default accept(..) methods:

int accept(csp.lang.Process process)

 throws ExceptionSet

 - accept any method

int accept(int method, csp.lang.Process process)

 throws ExceptionSet

 - accept only specified method

int accept(int[] methods, csp.lang.Process process)

 throws ExceptionSet

 - accept any method within the specified method range

These methods are implemented in the CallChannel base-class and are
specified in the CallChannelAccept interface, see Listing D-8. The
accept(..) methods should exclusively be used by the server process and
no other methods should be called by the server on the call channel.

public interface CallChannelAccept {

 public int accept(csp.lang.Process process)

 throws ExceptionSet;

 public int accept(int method, csp.lang.Process process)

 throws ExceptionSet;

 public int accept(int[] methods, csp.lang.Process process)

 throws ExceptionSet;

}

Listing D-8 Call channel accept interface.

In Listing D-9, a client class is shown. The client and server are executed
in parallel as shown in Listing D-10.

import csp.lang.*;

import csp.lang.Process;

public class Client implements Process

{

 OnOff channel;

 public Client(MyCallChannel channel) {

D.2 Client/Server example

295

 this.channel = channel;

 }

 public void run()

 throws ExceptionSet {

 ...

 channel.on();

 ...

 channel.calculate();

 ...

 channel.off();

 ...

 }

}

Listing D-9 Client process.

public static void main(String[] args) {

 MyCallChannel channel = new MyCallChannel();

 Client client = new ClientA(channel);

 Server server = new Server(channel);

 Parallel par = new Parallel(new Process[] {

 client,

 server

 });

 try {

 par.run();

 } catch (ExceptionSet es) {

 ... exception handling

 }

}

Listing D-10 Client-server example.

The server process is depicted in Listing D-4. The parallel construct is
elaborated in Section 4.6.1.

The use of data channels and call channels can be mixed as illustrated in
the following example. Consider a mechatronic system with an electrical
motor, which should be turned on and off by an embedded control
system.. The on() method turns on the electrical motor and the off()
method turns it off. Although the server process offers these services; it

296 D Examples

does not control the hardware directly to turn the motor on or off.
Instead, the server process uses a data channel that performs the actual
hardware control.

D.3 Barrier Example
The following example shows two processes that synchronize on a
barrier two times and this illustrates the differences between sync() and
sync(process).

import csp.lang.*;

import csp.lang.Process;

public class SyncWriter implements Process

{

 Process process;

 Barrier barrier;

 public SyncWriter(ChannelOutput_of_Object channel,Barrier barrier) {

 this.barrier = barrier;

 proces = new Producer(channel);

 }

 public void run()

 throws ExceptionSet {

 ...

 barrier.sync(); // sync example 1

 ...

 process.setValue(100); // sync example 2

 barrier.sync(process);

 ...

 }

}

public class SyncReader implements Process

{

 Process process;

 Barrier barrier;

 int value

 public SyncReader(ChannelInput_of_Object channel, Barrier barrier)

 this.barrier = barrier;

 proces = new Consumer(channel);

D.3 Barrier Example

297

 }

 public void run()

 throws ExceptionSet {

 ...

 barrier.sync(); // sync example 1

 ...

 barrier.sync(process); // sync example 2

 value = process.getValue();

 ...

 }

}

public static void main(String[] args) {

 Channel_of_Object channel = new Channel_of_Object();

 Barrier barrier = new Barrier(2);

 Process syncwriter = new SyncWriter(channel, barrier);

 Process syncreader = new SyncReader(channel, barrier);

 Parallel par = new Parallel(new Process[] {

 syncwriter,

 syncreader,

 });

 try {

 par.run();

 catch (ExceptionSet es) {

 ... exception handling

 }

}

Listing D-11 Barrier example: embedded example 1 performs a barrier
synchronization without communication and embedded example 2
communicates on the barrier synchronization.

The processes SyncWriter and SyncReader will synchronize on the first
sync() and secondly they will synchronize on sync(process) and the
barrier will execute each process at each end of the barrier. Successively,
both processes will synchronize on channel. In this case, the channel
performs communication (event) and the parallel construct in the barrier
performs the barrier synchronization (event). The processes Producer and
Consumer are given in Listing D-1 and Listing D-3.

298 D Examples

D.4 Additional Guards

D.4.1 Skip guards

In circumstances where the alternative construct should continue when
no channel is ready then a skip guard provides this behaviour. A skip
guard is a guard that does not wait for an event to be ready. Skip guards
can be created by one of the following constructors:

Unconditional skip guards

Guard() is always true and performs a
skip if selected

Guard(process) is always true and performs the
process if selected

CTJ provides a special process Skip that can play the role of a process or
the role of a guard, as in,

Guard(new Skip()) is always true and performs a
skip if selected; this is the same as
Guard() in the role of a guard

Skip() is always true and performs a
skip if selected; this is the same as
Guard(new Skip()) in the role of a
guard

Conditional skip guards

Guard(condition) performs skip if selected

Guard(condition, process) performs process if selected

The conditional skip guards are,

D.4 Additional Guards

299

Guard(condition, new Skip()) performs a skip if selected

Skip(condition) performs a skip if selected

D.4.2 Timeout guards

A process can also be guarded by a timeout event. A timeout guard can
be specified by one of the following constructors:

Unconditional timeout guards

Guard(time) becomes ready after the specified
time and performs a skip if
selected

Guard(time, process) becomes ready after the specified
time and executes the specified
process if selected

Timeout(time) same as Guard(time)

Timeout(time, process) same as Guard(time, process)

Conditional timeout guards

Guard(condition, time) performs a skip after the
specified time and if selected

Guard(condition, time, process) performs the specified process
after the specified time and if
selected

Timeout(condition, time) same as Guard(condition, time)

Timeout(condition, time, process) same as Guard(condition, time,

process)

300 D Examples

When multiple timeout guards in the guard list of the alternative
construct are specified then the guard with the smallest timeout will be
active. When there are multiple timeout guards with the smallest and
equal timeout then one will be arbitrarily selected. One timeout guard
per alternative construct is recommended.

D.5 State handling methods
After the construction of a process, the state handling methods are used
to dynamically set or get the process state before or after its execution.

In CSP diagrams, the ends of the solid arrows attached to a process are
implemented by the constructor. The ends of the open arrows are
implemented by the state handling methods. The use of the constructor is
elaborated in Chapter 4. In this section, the use of the state handling
methods for implementing the open arrows is illustrated.

Figure D-3 is a copy of Figure 3-11 with visible port labels attached at the
ends of the open arrows. As discussed in Section 3.5.3, the causality
determines that process f must be performed before g.

Figure D-3 Example of state initialization.

The code construct that results from Figure D-3 is given in Listing D-12.
The variables and the process instances are declared on top of the
program. At this stage, input variables are initiated with an initial value.

float v, w=1.5, x=0.1, y=2.1,z;

F f = new F();

z:float
f g

x=0.1:float y=2.1:float w=1.5:float

a:float

b:float

c:float

m:float

n:float
p:float

o:float

D.6 ARTY Implementation

301

G g = new G();

...

f.set_a(x);

f.set_b(y);

f.run();

z = f.get_c();

...

g.set_m(w);

g.set_n(z);

g.set_o(y);

g.run();

v = g.get_p();

Listing D-12 Example of initiating processes using state handling methods.

The constructor is a special initiate method, which initiates the process
instance after allocation in memory. In CTJ, the constructor is used to
assign channel-ends and barrier-ends to the process during its
construction. This can be very-well be done by state handling methods
before the process is executed.

D.6 ARTY Implementation
The implementation of the top network builder for ARTY and its sub-
processes are given in this section.

D.6.1 Top network builder

The CSP diagram of Figure 6-8 and Figure 6-9 describes the top network
builder of this control application. The CSP diagram translates to the
main source code in Listing D-13. This top network builder declares
channels, link drivers (external channel), variables, processes, and
constructs, which are required to build the top-level network of
communicating processes. In this case, the top network builder is the
only hardware dependent process in the software since it is the only one
that sets up hardware dependent objects. All other processes are
hardware independent since they solely use channels.

302 D Examples

In order to keep the listings readable we will omit the header files and
the inclusion of headers in the source code.

int main(void) {

 //--- external channels declarations (Figure 6-8)

 ChannelIn<double> *feedback_leftspeed = new Encoder(Encoder::LEFT);

 ChannelIn<double> *feedback_rightspeed = new Encoder(Encoder::RIGHT);

 ChannelOut<double> *steer_leftspeed = new Motor(Motor::LEFT);

 ChannelOut<double> *steer_rightspeed = new Motor(Motor::RIGHT);

 //--- internal channels declarations (Figure 6-8)

 Channel<double> *setpoint_leftspeed = new Channel<double>();

 Channel<double> *setpoint_rightspeed = new Channel<double>();

 //--- processes declarations (Figure 6-9,Figure 6-8)

 SequenceControllerProcess *scProc = new SequenceControllerProcess(

 setpoint_leftspeed, setpoint_rightspeed);

 MotorControllerLeftProcess *mclProc = new MotorControllerLeftProcess(

 setpoint_leftspeed, feedback_leftspeed, steer_leftspeed);

 MotorControllerRightProcess *mcrProc= new MotorControllerRightProcess(

 setpoint_rightspeed, feedback_rightspeed, steer_rightspeed);

 //--- compositional constructs declarations (Figure 6-9)

 Parallel *par = new Parallel();

 par->add(mclProc);

 par->add(mcrProc);

 PriParallel *pripar = new PriParallel();

 pripar->add(par);

 pripar->add(scProc);

 //--- set timed events (Figure 6-8)

 // (channel, start_sec, start_usec, interval_sec, interval_usec)

 System::at(feedback_leftspeed, 0, 500000, 0, 10000);

 System::at(feedback_rightspeed, 0, 500000, 0, 10000);

 System::at(steer_leftspeed, 0, 500000, 0, 10000);

 System::at(steer_rightspeed, 0, 500000, 0, 10000);

 //--- run the process

 pripar->run();

 //--- delete all instances

 delete feedback_leftspeed;

 delete feedback_rightspeed;

 ...

D.6 ARTY Implementation

303

 return 0;

}

Listing D-13 Top Network builder or main source code.

This network builder is further detailed by its child processes. The child
processes are described in the next sections.

D.6.2 MotorControllerLeftProcess

Process mclProc in Figure 6-8 and Figure 6-9 is described by process class
MotorControllerLeftProcess. The source code is given in Listing D-14.

The constructor specifies the process-interface of ports to which this
process can be connected via channels to other processes. The ChannelIn
and ChannelOut types specify whether a process can respectively read or
write on a channel. Reading and writing on respectively ChanOut and
ChanIn channels is prohibited by a compiler check. These ports are
generic whereby the type between brackets, i.e. <double>, specifies that
the channel only accepts data of type double. The references of channels
are kept local so that the run() method can read or write on these
channels. In the constructor the arrays of indexed channels are declared
and they are private to the process. The constructor assigns the named
channels to the indexed channels. Also the 20-process mcl20Proc is
declared and it is connected to other processes via the array of input-
channels and they array of output-channels.

/** Construct MotorControllerLeftProcess. **/

MotorControllerLeftProcess::MotorControllerLeftProcess(

ChannelIn<double> *setpoint, ChannelIn<double> *feedback,

ChannelOut<double> *steer) {

 chanin = ChannelIn<double> * [2];

 chanout = ChannelOut<double> * [1];

 chanin[0] = setpoint;

 chanin[1] = feedback;

 chanout[0] = steer;

 mcl20Proc = new MotorControllerLeft20Process(chanin, chanout);

}

304 D Examples

/** Process body. **/

void MotorControllerLeftProcess::run(void) {

 while(true) {

 mcl20Proc->run();

 }

}

/** Destruct MotorControllerLeftProcess. **/

MotorControllerLeftProcess::~MotorControllerLeftProcess(void) {

 delete mcl20Proc;

 delete chanin;

 delete chanout;

}

Listing D-14 Process class MotorControllerLeftProcess.

The run() method simply performs the 20-process in an infinite loop as
specified by the composition diagram in Figure 6-11. The destructor
~MotorControllerLeftProcess deletes all objects and processes that were
created by its constructor.

D.6.3 MotorControllerLeft20Process

The 20-process mcl20Proc is dedicated to invoking methods on the sub-
model object. Its process class MotorControllerLeft20Proces is shown in
Listing D-15. The sub-model object mclSubmodel is created and initialized.
The alternative construct as specified in Figure 6-11 is declared by the
constructor and performed by the switch(..) {..} clause in the run()
method.

/** Construct MotorControllerLeft20Process. **/

MotorControllerLeft20Process::MotorControllerLeft20Process(

ChannelIn<double> **chanin, ChannelOut<double> **chanout) {

 this->chanin = chanin;

 this->chanout = chanout;

 this->u = (double *) malloc (2 * sizeof (double));

 this->y = (double *) malloc (1 * sizeof (double));

 //--- Create and initialize Submodel

 mclSubmodel = new MotorControllerLeft;

 mclSubmodel->Initialize(this->u, this->y, 0);

 //--- Create Alternative construct

D.7 JIWY Implementation

305

 prialt = new PriAlternative(chanin[0], chanin[1], NULL);

}

/** Process body. **/

void MotorControllerLeft20Process::run(void) {

 switch(prialt->select()) {

 case 0: // on setpoint

 chanin[0]->read(&(u[0]));

 break;

 case 1: // on feedback

 chanin[1]->read(&(u[1]));

 mclSubmodel->Calculate (u, y);

 chanout[0]->write(&(y[0]));

 break;

 }

}

/** Destruct MotorControllerLeft20Process. **/

MotorControllerLeft20Process::~MotorControllerLeft20Process(void) {

 free(u);

 free(y);

 delete mclSubmodel;

 delete prialt;

}

Listing D-15 Process class MotorControllerLeft20Process.

D.7 JIWY Implementation
The implementation of the top network builder for JIWY and its sub-
processes are given in this section.

D.7.1 Top network builder

The main source code is derived from the context diagram, see Figure
6-16 and Figure 6-18. The source code is given in Listing D-16. Some
parts are discussed separately. The channel declarations are discussed
first.

int main(void) {

 //--- external channels declarations

306 D Examples

 // Analog joystick

 AnalogJoystick *joystick = new AnalogJoystick();

 ChannelIn<double> *joystick_horizontal = new AnalogJoystickX(joystick);

 ChannelIn<double> *joystick_vertical = new AnalogJoystickY(joystick);

 ChannelOut<int> *joystick_buttons = \

 new AnalogJoystickButtons(joystick);

 //--- DAQSTC, National Instruments 6024E IO Board

 DAQSTC *daqstc = new DAQSTC();

 daqstc->Initialise();

 // Analog Output

 daqstc->SetAOTM(AOTM::Primary, AOTM::CPUDriven);

 ChannelOut<double> *control_horizontal = daqstc->GetDAC(DAC::DAC0);

 ChannelOut<double> *control_vertical = daqstc->GetDAC(DAC::DAC1);

 // Two counters for sensors

 ChannelIn<double> *feedback_horizontal = \

 daqstc->GetCounter(GPC::Counter0);

 ChannelIn<double> *feedback_vertical = \

 daqstc->GetCounter(GPC::Counter1);

 //--- internal channels declarations (‘chan’ prefix to variable names)

 Figure 6-18

 Channel<double> leftmax_h = new ChannelVar<double>;

 Channel<double> rightmax_h = new ChannelVar<double>;

 Channel<double> leftmax_v = new ChannelVar<double>;

 Channel<double> rightmax_v = new ChannelVar<double>;

 //--- processes declarations

 ... see Listing D-17.

 //--- compositional constructs declarations

 ... see Listing D-18.

 //--- set timed events

 ... see Listing D-19.

 //--- run the process

 par->run();

 //--- delete all instances

 ...

}

Listing D-16 Top Network Builder: declaration of internal and external
channels.

D.7 JIWY Implementation

307

Firstly, the external channels (i.e. link drivers) are declared. The
communication relationships leftmax_h, rightmax_h, leftmax_v, and
rightmax_v are prefixed by chan. These become ChannelVar channels
which are unblocking channels representing synchronized shared
variables. These special channels are useful for communication between
processes in a sequential composition. ChannelVar is a sub-class of Channel
and therefore a ChannelVar can replace a channel or a ChannelVar can be
replaced by another channel in code; they can be intertwined because
they have the same channel-interface. The process instance interface does
not specify state handling methods, otherwise state handling methods
(open arrows) could have been used instead of ChannelVar channels. The
ChannelVar channels are used to illustrate that buffered data-channels are
not restricting to strictly parallel relationships in case processes are
reused.

The processes are declared in the main source file as follows:

ControlHorizontal *motionControlH = new ControlHorizontal(

 joystick_horizontal, joystick_buttons, feedback_horizontal,

 control_horizontal, leftmax_h, rightmax_h);

ControlVertical *motionControlV = new ControlVertical(

 joystick_vertical, joystick_buttons, feedback_vertical,

 control_vertical, leftmax_v, rightmax_v);

VelocityControlLeftHorizontalProcess *alignLH = new

 VelocityControlLeftHorizontalProcess(feedback_horizontal,

 control_horizontal, leftmax_h);

VelocityControlRightHorizontalProcess *alignRH = new

 VelocityControlRightHorizontalProcess(feedback_horizontal,

 control_horizontal, rightmax_h);

VelocityControlLeftVerticalProcess *alignLV = new

 VelocityControlLeftVerticalProcess(feedback_vertical,

 control_vertical, leftmax_v);

VelocityControlRightVerticalProcess *alignRV = new

 VelocityControlRightVerticalProcess(feedback_vertical,

 control_vertical, rightmax_v);

HomingHorizontal *homingH = new HomingHorizontal(feedback_horizontal,

 control_horizontal, leftmax_h, rightmax_h);

HomingVertical *homingV = new HomingVertical(feedback_vertical,

 control_vertical, leftmax_v, rightmax_v);

Listing D-17 Declaration of processes.

308 D Examples

The arguments correspond to the port names of the process-interface for
each process. This is consistent with the communication diagram of the
process architecture.

The compositional construct as specified in Figure 6-18 is coded with
CTC++ in Listing D-18.

Sequential *seq_h = new Sequential(alignLH, alignRH, motionControlH,

 homingH, NULL);

Sequential *seq_v = new Sequential(alignLV, alignRV, motionControlV,

 homingV, NULL);

Parallel *par = new Parallel(seq_h, seq_v, NULL);

Listing D-18 Declaration of compositional constructs.

The environmental process is set to a particular timing so that it will
accept events at certain moment in time with periodical intervals. The
sampling time for the horizontal control loop Tsh and for the vertical
control loop Tsv are specified in the communication diagram on the timed
external channels. See @Tsh for the external channels feedback_horizontal,
joystick_horizontal, and control_horizontal in Figure 6-16. For
example, we tested with Tsh = 100000 μs (=10 Hz) and Tsv = 10000 μs
(=100 Hz).The code fragment in Listing D-19 must be include before the
par->run() in the main source file. See Listing D-18.

System::at(feedback_horizontal, starttime, Tsh);

System::at(joystick_horizontal, starttime, Tsh);

System::at(control_horizontal, starttime, Tsh);

System::at(feedback_vertical, starttime, Tsv);

System::at(joystick_vertical, starttime, Tsv);

System::at(control_vertical, starttime, Tsv);

Listing D-19 Timing initialization part.

The starttime is set to a value that is long enough for the first events to
occur after all initializations has completed. We set the starttime to 10
ms.

The timed channels will throw a TimeoutException when processes do not
arrive on the channel before the environmental process is willing to
engage in the event. In this case, processes will terminate unsuccessfully
and exceptions must be handled. JIWY is hard real-time and the PC is

D.7 JIWY Implementation

309

fast enough so that timeout-exceptions did not occur. We omit exception
handling, which is further discussed in (Engelen, 2004). Exception
handling is an ongoing topic for further research.

The entire process will be executed by invoking par->run(). Thus before
the run() method of the top-level construct is invoked, all processes,
channels, constructs, timing, and objects have been prepared. Once this
run() method is invoked, the real-time run bodies of the processes will be
performed accordingly to the compositional relationships in the CSP
diagrams. After the top run() method terminates it can be invoked again
or the declared entities can be deleted.

D.7.2 Motion controller process

Process motionControlH is depicted in Figure 6-19 and Figure 6-20. The
process-interface of motionControlH is specified by the constructor in
Listing D-20. This constructor assigns its ports to the ports of the child
processes. The internal channels for setpoint, stop, and zero are declared.
Also the 20-process servoHorizontal is declared and connected to the
chanin and chanout channel arrays.

PositionControllerHorizontal::PositionControllerHorizontal(

 ChannelIn<double> *joystick_axis, ChannelIn<double> *joystick_buttons,

 ChannelIn<double> *feedback, ChannelOut<double> *control,

 ChannelIn<double> *leftmax, ChannelIn<double> *rightmax) {

 //--- create channel-input array and a channel-output array

 this->chanin = new ChannelIn<double> * [4];

 this->chanout = new ChannelOut<double> * [2];

 chanin[0] = leftmax;

 chanin[1] = rightmax;

 chanin[2] = feedback;

 chanin[3] = joystick_axis;

 chanout[0] = NULL;

 chanout[1] = control;

 //--- create the 20-process

 servoHorizontal = new PositionControllerHorizontal20Process(

 chanin, chanout);

310 D Examples

 //--- set up the alternative construct process

 prialt = new PriAlternative();

 alt->add(joystick_buttons); // first preference

 alt->add(feedback); // second preference

}

void PositionControllerHorizontal::run(void) {

 int status = 0;

 double zero = 0.0;

 do {

 switch(prialt->select()) {

 case 0: //--- controller process

 servoHorizontal->run();

 break;

 case 1: //--- stop button process

 joystick_buttons->read(&status);

 break;

 }

 } while (status != 2);

 //--- release output by setting to zero

 control->write(&zero);

}

PositionControllerHorizontal::~PositionControllerHorizontal() {

 ...destruct all objects and processes

}

Listing D-20 Process class PositionControllerHorizontal.

Here status and zero are variables. This is determined by the ?- and !-
processes in Figure 6-19. Because process servoHorizontal is a 20-process
the channels must be mapped on chanin[] and chanout[] arrays. This
process is generated by 20-sim and the C++ template. The switch(alt-
>select()) {} clause in the run() body performs the alternative
construct. The alternative construct chooses between feedback and
joystick_buttons with preference to joystick_buttons so that one can
always stop the controller.

D.7.3 Alignment controller process

The alignment process alignH in Figure 6-21 and Figure 6-22 is coded in
Listing D-21. Process vleftHorizontal is the velocity controller of the
alignment process.

D.7 JIWY Implementation

311

VelocityControlLeftHorizontal::VelocityControlLeftHorizontal(

 ChannelIn<double> *feedback, ChannelOut<double> *control,

 ChannelIn<double> *max) {

 //--- create variable channel

 stop_ = new ChannelVar<double>; //!!

 //--- global variables

 double stop;

 //--- create channel-input array and a channel-output array

 this->chanin = new ChannelIn<double> * [1];

 this->chanout = new ChannelOut<double> * [3]; //!! [3]->[2]

 chanin[0] = feedback;

 chanout[0] = control;

 chanout[1] = max;

 chanout[2] = stop_; //!!

 //--- create the 20-process

 vleftHorizontal = new VelocityControlLeftHorizontal20Process(

 chanin, chanout);

}

void VelocityControlLeftHorizontal::run(void) {

 do {

 vleftHorizontal->run();

 stop_->read(&stop); //!!

 } while (!stop);

}

VelocityControlLeftHorizontal::~VelocityControlLeftHorizontal() {

 ...destruct all objects and processes

}

Listing D-21 Run body of alignment process.

Here, stop is a variable with a channel-interface that enables variable
sharing between sequential processes. The channel name is suffixed with
a ‘_’ to distinguish between the channel stop_ and the variable stop. This
is not an exact translation of the CSP diagram. The ChannelVar
implementation should be replaced by state handling methods as
described in Appendix D.5. The C++ templates for 20-sim have not yet
been adapted to support state handling methods. We left the ChannelVar
implementation in here to illustrate that buffered data-channels can be

312 D Examples

used to connect processes that are performed in sequence. This increases
the reusability of existing processes in process architectures.

The use of state handling methods would include the following code to
the previous code in Listing D-21. The //!! Statements must be removed
or changed.

public void setStop(int stop) {

 this.stop = stop;

}

D.7.4 Homing controller process

The homing process steers the joint to its centre position. Subsequently,
the motors are turned off. The CSP diagram in Figure 6-23 and Figure
6-24 is coded in Listing D-22.

HomingHorizontal::HomingHorizontal(ChannelIn<double> *feedback,

 ChannelOut<double> *control, ChannelIn<double> *leftmax,

 ChannelIn<double> *rightmax) {

 //--- create variable channels

 setpoint_ = new ChannelVar<double>(0.0);

 stop_ = new ChannelVar<double>;

 //--- create channel-input array and a channel-output array

 this->chanin = new ChannelIn<double> * [4];

 this->chanout = new ChannelOut<double> * [2];

 chanin[0] = leftmax;

 chanin[1] = rightmax;

 chanin[2] = feedback;

 chanin[3] = setpoint_;

 chanout[0] = stop_;

 chanout[1] = control;

 //--- create the 20-process

 homingHorizontal = new PositionControllerHorizontal20Process(

 chanin, chanout);

}

void HomingHorizontal::run(void) {

 double zero = 0.0;

 do {

D.7 JIWY Implementation

313

 homingHorizontal->run();

 stop_->read(&stop);

 } while (!stop);

 //--- release output by setting to zero

 control->write(&zero);

}

HomingHorizontal::~HomingHorizontal() {

 ...destruct all objects and processes

}

Listing D-22 Constructor and run body of homing process.

Here, setpoint and stop are variables passed as channels (respectively
named setpoint_ and stop_) to the homingHorizontal process.

A P P E N D I X E

Alting
E Alting

E.1 Introduction
The word alting is frequently used as a verb representing the operation of
the alternative process. The processes that are connected to the
alternative process via a separate channel are called alting processes. The
alternative process chooses one guarded process out of many guarded
processes that can communicate via a channel with its alting process. On
two or more alting processes that are willing to communicate with
guarded processes, the alternative process will select one guarded
process that is able to commit in communication. In software, the choice
or the decision policy is prioritized.

The decision policy, semantics, and properties of alting for real-time
systems are discussed in this appendix. In Section E.2 the notion of fair
alting is analyzed and illustrates the decision policy. Section E.4
discusses the semantics of preference alting in contrast to resolute alting.
Preference alting allows for optimal performance between compositions
of ALT/PRIALT and PAR/PRIPAR.

E.2 Fair alting
In order to understand the fairness of an ALT construct we consider the
ideal behaviour of a shared any-to-any channel. We will motivate in this

316 E Alting

appendix that the behaviour of a fair ALT should be equal to the
behaviour of an any-to-any channel. Reversely, the technique that is used
to implement an any-to-any channel can be used to implement a fair
ALT. This shows that the any-to-any channel have lots in common with
fairly alting and visa versa. This gives confidence that the choice of
fairness policy and implementation for the ALT (and PRIALT) is a good
choice. The notion of preference priorities allows us to distinguish
between an ALT and a PRIALT in a reasonable way that is intuitive for
software engineering.

E.3 Any-to-any channel
An any-to-any channel is a CSP channel that can be safely used by
multiple reader processes and multiple writer processes. Only one pair of
reader and writer can communicate one at the time.

Multiple writers or readers should claim their peer-end of the any-to-any
channel in a fair fashion according to a mixed policy of a first-come-first-
served policy between equally-prioritized processes and a highest-
priority-first policy between unequally-prioritized processes. We
consider it fair that a process of higher priority should be served before a
process with a lower priority.

A semaphore construct with a prioritized queue according to the above
mention policies at the peer-end of a channel can fairly synchronize
between multiple processes and takes their prioritized parallel
relationships into account. The implementation of a prioritized queuing
mechanism is not difficult. The mixed policy and implementation of a
semaphore is the same to the behaviour and implementing of the fair
ALT.

The any-to-any channel can be described by two alternative processes.
For example, consider an any-to-any channel c with at one end three
writer processes P, Q, and S, and at the other end three reader processes
X, Y, and Z. It may be obvious that the above described mixed policy a

E.3 Any-to-any channel

317

fair selection between pairs of a writer and reader processes. This system
can be described as

{ }.c T
SYSTEM W R= with W P Q S= and R X Y Z= .

where all processes are willing to communicate over channel c. The
processes are defined as follows

1

2

3

! '
! '
! '

P c a P

Q c a Q

S c a S

= →
= →
= →

 and
? '()
? '()
? '()

X c x X x

Y c y Y y

Z c z Z z

= →
= →
= →

Process R can be described by a choice construct instead of a parallel
construct of multiple reader processes.

()()()
()()()

()()()
()()()

()()()
()()()

? '() ? '()
? '()

? ? '() '()

? '() ? '()
? '()

? ? '() '()

? '() ? '()
? '()

? ? '() '()

c y Y y c z Z z
c x X x

c z c y Y y Z z

c x X x c z Z z
c y Y y

c z c x X x Z z

c x X x c y Y y
c z Z z

c y c x X x Y y

⎛ ⎞⎛ ⎞→ →
⎜ ⎟⎜ ⎟→
⎜ ⎟⎜ ⎟→ →⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞→ →
⎜ ⎟⎜ ⎟→

⎜ ⎟⎜ ⎟→ →⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞→ →
⎜ ⎟⎜ ⎟→
⎜ ⎟⎜ ⎟→ →⎝ ⎠⎝ ⎠

Process W can be described by a choice construct instead of a parallel
construct of multiple writer processes.

()()() ()()()()()
()()() ()()()()()
()()() ()()()()()

1 2 3 3 2

2 1 3 3 1

3 1 2 2 1

! ' ! ' ? ' ! ! ' '

! ' ! ' ! ' ! ! '() '

? ' ! ' ? ' ! ! ' '

c a P c a Q c a S c a c a Q S

c a Q c a P c a S c a c a P x S

c a S c a P c a Q c a c a P Q

→ → → → →

→ → → → →

→ → → → →

The choice between the processes is arbitrary and allows for input guards
and output guards. In practice, an input guard and output guard will
never meet each other and the choice is prioritized to ensure fairness or

318 E Alting

unfairness. The notion of preference priorities is the most appropriate
solution.

Fairly alting on a any-to-any channel

The alting policy between alting processes with equally-prioritized
parallel relationships should based on their arrival time, as in

() () (){ }a ba V a V b W t t→ → → ∧ <

Here, ta and tb are timestamp of the alting processes willing to engage in
respectively event a and b.

In case of an any-to-any channel there should be a fair selection between
the multiple readers and a fair selection between the multiple writers.
For example, Q is willing to communicate before P and P is willing to
communicate before S then this equals:

()()()()2 1 3! ' ! ' ! 'c a Q c a P c a S→ → →

At the reader side of the any-to-any channel, consider Z is willing to
communicate before X and X is willing to communicate before Y. This
equals:

()()()()? '() ? '() ? '()c z Z z c x X x c y Y y→ → →

Consequently, SYSTEM will behave as

()()()()()
()()()()()

⎛ ⎞→ → →
⎜ ⎟= ⎜ ⎟

→ → →⎜ ⎟
⎝ ⎠

2 1 3! ' ! ' ! '

? '() ? '() ? '()

c a Q c a P c a S
SYSTEM

c z Z z c x X x c y Y y

After a1, a2, and a3, have been offered then SYSTEM continues as:

() ()2 1 3
{ . }

' ' ' '() '() '()
c x

SYSTEM Q P S Z a X a Y a=

E.3 Any-to-any channel

319

If we take the prioritized parallel relationships between processes into
account then we apply the following refinement:

Two threads that claim a channel a (i.e. one at the reader side and one at
the writer side of the channel) participate in one communication event a.
Property a.thread is one of the two threads with the highest priority (i.e.
lowest a.thread.priority) which is defined as

a.thread=
1 2

1
1 2

. . . . ;
.

; , ;

a thread priority a thread priority
a thread

priority thread thread THREAD a

≤⎧ ⎫
⎨ ⎬∈ ∈ ∈∑⎩ ⎭

The priority values are assigned to threadi.priority by the equally-
prioritized and unequally-prioritized parallel relationships between
processes.

The function pri(a) returns the priority index of the executing thread with
the highest priority engaging in communication event a. Function pri(a) is
defined as

. . ;
() . . , ;

;

b maxpriority b thread priority

pri a maxpriority a thread priority maxpriority priority

thread THREAD a

⎧ ⎫∀ ∈∑• ≥
⎪ ⎪= − ∈⎨ ⎬
⎪ ⎪∈ ∈∑⎩ ⎭

with THREAD as the non-empty set of all threads and Σ as the set of all
communication events. The constant maxpriority is the highest priority
value (i.e. the lowest priority) in the set of possible events. Here,
maxpriority can be equal to the total of prioritized parallel relationships +
1.

The comparison of priorities between two events a and b in a (equally-
prioritized) parallel relationship of processes, executing at equal
priorities, is defined as

()
. . . .

() () ; ,
. .

a thread priority b thread priority
pri a pri b a b a b

a thread b thread a b

⎧ ⎫= ∧⎛ ⎞⎪ ⎪= ∨ = ∈∑⎨ ⎬⎜ ⎟≠ ∧ ≠⎝ ⎠⎪ ⎪⎩ ⎭

320 E Alting

The comparison of priorities between two events a and b in a (unequally)
prioritized parallel relationship of processes, executing at different
priorities, is defined as

. . . .
() () ; ,

. .
a thread priority b thread priority

pri a pri b a b
a thread b thread a b

⎧ ⎫< ∧⎛ ⎞⎪ ⎪> ∈∑⎨ ⎬⎜ ⎟≠ ∧ ≠⎝ ⎠⎪ ⎪⎩ ⎭

A fair ALT is a preference ALT with operator , which semantics is
defined as

() () ()
() ()
()() ()

() ()
a b

a P b Q

a P b Q a P t t pri a pri b

pri a pri b

⎧ ⎫→ → ∧
⎪ ⎪

→ → ⇒ → ⎛ ⎞< ∧ = ∨⎨ ⎬
⎜ ⎟⎪ ⎪>⎝ ⎠⎩ ⎭

The occurrence times ta and tb of the events a and b in a deterministic
environment can never be the same, thus ta ≠ tb. Preference ALT is a
refinement of a deterministic .

Operator is the prioritized version of , which is a possible valid
refinement for . The semantics of is defined as

() () () () ()
() ()

a P b Q
a P b Q a P

pri a pri b

⎧ ⎫→ → ∧⎪ ⎪→ → ⇒ →⎨ ⎬
≥⎪ ⎪⎩ ⎭

and

() () () () ()
() ()

a P b Q
a P b Q b Q

pri a pri b

⎧ ⎫→ → ∧⎪ ⎪→ → ⇒ →⎨ ⎬
<⎪ ⎪⎩ ⎭

These preference choice operators and are further discussed in
Section E.4.

E.4 Semantics of alting

321

E.4 Semantics of alting
In the previous section the semantics of the preference choice operators
have been discussed. In this section these semantics are put in contrast to
the classical choice operators. Particularly, the definitions and properties
of resolute and preference alting are described. The semantics of
preference alting given in this section is a wish list of behaviour that is
most applicable for software engineering. Preference alting is an
extension of the semantics of resolute alting. This behaviour provides an
optimal scheduling policy that is adaptive to the presence of surrounding
prioritized parallel relationships between processes. Preference alting
and any-to-any channels share similar properties, desired behaviours,
and consequently a similar implementation.

Definitions of alting

The (symmetric) choice operator is defined in the following manner:

() (): () : () : ()
def

x A P x y B Q y z A B R z→ → = ∪ →

where

 R(z) = P(z) if z ∈ A - B

 = Q(z) if z ∈ B - A

 = P(z) Q(z) if z ∈ A ∩ B

If the first event offered by P and Q are disjoint, the new process behaves
according to ordinary choice ‘|’, otherwise according to the internal
choice operator that is characterized by the fact that the environment
cannot influence the choice between the processes P(z) and Q(z). The
process P(z) Q(z) behaves either as P(z) or as Q(z). The choice between
them is made internally and, therefore, it is not possible to predict which
one of the process P(z) or Q(z) may emerge from P(z) Q(z). The non-
deterministic behaviour of process P(z) Q(z) is impossible to realize in a
deterministic environment, say on a sequential processor.

322 E Alting

We introduce the resolute choice operators and which are
deterministic versions of the theoretical choice operator . Both resolute
choice operators are respectively equally-prioritized and unequally-
prioritized.

The operator is defined in the following manner:

() (): () : () : ()
def

x A P x y B Q y z A B R z→ → = ∪ →

where

 R(z) = P(z) and i=1 if z ∈ A - B

 = Q(z) and i=0 if z ∈ B - A

 =

if (=0) ()

if (=1) ()
 = (+1) modulo 2

i P z

i Q z

i i

⎫
⎪
⎬
⎪
⎭

 if z ∈ A ∩ B

with i ∈ and i is initially 0.

The (asymmetric) choice operator is a particular implementation of the
 operator; similarly the is a different implementation of . These

resolute choice operators are restricted in that they do not allow
propagation of priority over events. The operator is defined in the
following manner:

() (): () : () : ()
def

x A P x y B Q y z A B R z→ → = ∪ →

where

 R(z) = P(z) if z ∈ A - B

 = Q(z) if z ∈ B - A

 = P(z) if z ∈ A ∩ B

The preference symmetric and asymmetric choices are denoted by
respectively the operators and , which must know the priorities of

E.4 Semantics of alting

323

the alting processes that are committed in communication with the
alternative process. If we refer to the priority of a process we mean
implicitly the priority of the thread of control that performs event
handling within a process. This property holds for a process which has
no knowledge about its priority. These definitions allow propagation of
priorities over events.

The operator is defined in the following manner:

() (): () : () : ()
def

x A P x y B Q y z A B R z→ → = ∪ →

where

 R(z) = P(z) if z ∈ A - B

 = Q(z) if z ∈ B - A

 = P(z) if z ∈ A ∩ B and pri(x) > pri(y)

 = Q(z) if z ∈ A ∩ B and pri(x) < pri(y)

 = P(z) if z ∈ A ∩ B and pri(x) = pri(y) and ta < tb

 = Q(z) if z ∈ A ∩ B and pri(x) = pri(y) and ta > tb

The operator is defined as

() (): () : () : ()
def

x A P x y B Q y z A B R z→ → = ∪ →

where

 R(z) = P(z) if z ∈ A - B

 = Q(z) if z ∈ B - A

 = P(z) if z ∈ A ∩ B and pri(x) > pri(y)

 = Q(z) if z ∈ A ∩ B and pri(x) < pri(y)

 = P(z) if z ∈ A ∩ B and pri(x) = pri(y)

324 E Alting

E.5 Properties of alting
In this section we will give some properties of alting for the operators ,

, , , and . On the basis of these properties we can observe some
constructive parallels. Preference alting offers a great deal of fairness and
allows propagation of external priorities over events.

The operator is idempotent, commutative and associative.

() () ()a A a A a A→ → = → <idempotent>

() () () ()a A b B b B a A→ → = → → <commutative>

() ()() () () () () ()a A b B c C a A b B c C→ → → = → → → <associative>

Operator is idempotent and associative, but not commutative.

() () ()a A a A a A→ → = → <idempotent>

() () () ()a A b B b B a A→ → ≠ → → <not commutative>

() ()() () () () () ()a A b B c C a A b B c C→ → → = → → → <associative>

Although the operator is commutative it is not surprising that operator
 is not commutative, because is uni-directive and is bi-directive.

Operator is idempotent, associative and partially commutative.

() () ()a A a A a A→ → = → <idempotent>

() () () ()a A b B b B a A→ → ≈ → → <partially commutative>

() ()() () () () () ()a A b B c C a A b B c C→ → → = → → → <associative>

Operator is partially commutative. If both events a and b are ready
then () ()a A b B→ → will initially select process ()a A→ and
() ()b B a A→ → will initially select ()b B→ . This is because by the fact
that the search for ready guards starts at 0. The is not entirely equal to

 with respect to this property.

E.5 Properties of alting

325

Operator is idempotent and associative, but not commutative.

() () ()a A a A a A→ → = → <idempotent>

() () () ()a A b B b B a A→ → ≠ → → <not commutative>

() ()() () () () () ()a A b B c C a A b B c C→ → → = → → → <associative>

Operator is not commutative. If both events a and b are ready then the
left-side process will be selected. This is equivalent to .

Operator is idempotent, commutative and associative, and thus its
properties are equal to the operator.

() () ()a A a A a A→ → = → <idempotent>

() () () ()a A b B b B a A→ → = → → <commutative>

() ()() () () () () ()a A b B c C a A b B c C→ → → = → → → <associative>

Operator is idempotent, associative and partially commutative.

() () ()a A a A a A→ → = → <idempotent>

() () () () for () ()a A b B b B a A pri a pri b→ → = → → ≠ <commutative>

() () () () for () ()a A b B b B a A pri a pri b→ → ≠ → → = <not commutative>

() ()() () () () () ()a A b B c C a A b B c C→ → → = → → → <associative>

If pri(a) = pri(b) then the preference choice operator shows similarities
with the resolute choice operator:

{ }() ()| () () () ()
stat

a A b B pri a pri b a A b B→ → = ⇔ → →

{ }() ()| () () () ()a A b B pri a pri b a A b B→ → = ⇔ → →

The first is based on a cyclic-indexing policy. The left hand-side and right
hand-side are statistically equivalent, but can differ in the first choice.

326 E Alting

The second is based on a first-come-first-served policy, which left hand-
side and right hand-side are equivalent.

If pri(a) ≠ pri(b) then the preference symmetric choice operator shows
similarities with the preference asymmetric choice operator:

() (){ }
() (){ }
() (){ }

() ()

() ()

() ()

a A b B pri a pri b

a A b B pri a pri b

b B a A pri a pri b

→ → ≠ ⇔

→ → ≠ ⇔

→ → ≠

Any difference in priority, e.g. pri(a) < pri(b), turns the preference
asymmetric choice operator into a specific resolute asymmetric choice
operator:

() (){ }
() (){ }

() () ()

() ()

() ()

a A b B pri a pri b

b B a A pri a pri b

b B a A b B

→ → < ⇔

→ → < ⇔

→ → = →

when both a and b are offered.

A P P E N D I X F

Solving priority conflicts
with buffered channels

F Solving priority conflicts with buffered channels

F.1 Introduction
Communication with unbuffered data channels between higher-priority
processes and lower-priority processes can cause priority inversion
problems. The effect is that a higher-priority process, which gets blocked
on a data channel while waiting for a lower-priority process to read from
the data channel, will be pulled down to the priority of the lower-priority
process. This is in disagreement with the prioritized parallel relationship.
The result is a performance penalty that can cause the higher-priority
process not to meet its deadline. This problem is due to a priority conflict
in the design.

In Section 512.5.0, a technique is described for finding priority conflicts in
CSP diagrams. In this appendix, this technique is used to show that a
design that is not priority conflict-free, as a result of a data channel, can
become priority conflict-free by using a buffered data channel. The
technique is applicable for complex patterns.

328 F Solving priority conflicts with buffered channels

F.2 Buffered data channels solve
priority conflicts

Figure F-1a shows two communicating processes P1 and P2 via
rendezvous data channel c. Process P1 is executed at a higher priority
than P2 and process P3 is executed with a priority somewhere in the
middle. We assume that process P3 will repeatedly wait on its channel
otherwise P2 will never be executed and this model makes no sense.
Process P3 can hold P2 from executing and process P1 will not be served
by P2. It is likely that process P1 can not meet its deadline due to P3
claiming the CPU. This priority inversion problem can be solved when a
sub-sampling buffered process is used that decouples P1 from P2. Such a
buffer process is depicted in Figure F-1b. A sub-sampling buffered data
channel can replace the buffer process Buf and channels a and b which
makes the diagram as simple as in Figure F-1b. This example is described
in Section 5.4.

Figure F-1 Priority conflict cause and solution:
(a) Priority inversion problem caused by channel a,
(b) Solution via a buffer process..

In Figure F-1b, the data channels are labelled a and b, which also identify
their communication events. The communication event a and b are
alternating or in sequence, but they cannot happen at the same time.
When a and b are alternating then the priority conflict should be check on
engagement in a and in b. The buffer process Buf should not be full

P3

P1

P2

(b) (a)

Buf

a

b

P3

P1

P2

a

F.2 Buffered data channels solve priority conflicts

329

otherwise it will be blocking P1. We assume that Buf describes a sub-
sampling buffer that can never become full.

Figure F-2 Proof of priority conflict-free using buffered
communication:
(a) communication process on channel a shows that the
model is priority conflict-free
(b) communication process on channel b shows that the
model is priority conflict-free
(c) communication process on a and b (in sequence)
shows that the model is not priority conflict-free.

Figure F-2a shows the engagement in a. Processes P1 and Buf form
communication process Q at the instance of communication. Event b
cannot occur at the same instance in time as event a and thus priority
inversion problem does not apply on b. Channel b does not block P1 and
so b does not require buffering. We can omit b. All unequally-prioritized
parallel relationships do not point in one direction of a cycle. Therefore,
we conclude that this scenario is priority conflict-free.

Figure F-2b shows the engagement in b. Processes Buf and P2 form
communication process R. Similarly, event a cannot happen at the same
instance of time as event b. At least one unequally-prioritized parallel
relationship points in the opposite direction on the cycle. Thus, this
scenario is priority conflict-free.

In case the buffer is a FIFO type of buffer and reaches its full state then
the buffer will be blocking P1 and the priority inversion problem rises. In
this case, the scenario of communication events is sequential: first b then

(a) (b)

P3

P1

P2

Buf

a

b

P3

P1

P2

Buf

a

b

Q

R
P3

P1

P2

(c)

Buf

a

b

S

330 F Solving priority conflicts with buffered channels

a. This sequential communication comprises a single communication
process. Figure F-2c shows that this causes a priority conflict since the
unequally-prioritized parallel relationships point in one direction on the
cycle between S and P3.

Therefore it is important that the buffer does not reach the full state.
Overwriting (or sub-sampling) is an important property of the buffered
data channel to avoid the priority inversion problem.

In case the channel is directed from P2 to P1 a similar proof can be given
as described above and a super-sampling buffered channel is essential.

A P P E N D I X G

Compositional analysis rule
G Compositional analysis rule

G.1 Introduction
In this appendix, a compositional analysis rule is described that is useful for
analyzing compositional CSP constructs, such as

• determining operators on hidden interrelationships derived
from user-specified paths of relationships,

• writing ambiguous or unambiguous algebraic expressions,

• detecting specification conflicts.

The compositional analysis rule applies to triangular cycles in
compositional diagrams.

G.2 Triangular cycles
A triangular cycle consists of three processes that are completely
connected, e.g. every process is connected to each other process. Every
pair of processes is connected by either a user-specified interrelationships
or by hidden interrelationships.

For example, three processes on a user-specified path are part of a
triangular cycle that is closed by a hidden interrelationship between the
outer processes. See Figure G-1. The black lines are user-specified

332 G Compositional analysis rule

interrelationships and the grey line is the visualized hidden
interrelationship. The operator on the hidden interrelationship needs to
be determined in order to make the composition unambiguous.

Figure G-1 Triangular cycle with one hidden interrelationship.

Let operator ⊕
PQ represent a binary CSP operator between P and Q and ⊕

PQ
its complement.

For each pair (),⊕ ⊕
PQ PQ

 applies

() () () () () () (){ }, , , , , , , , , , , ,⊕ ⊕ ∈ ← → Δ Δ
PQ PQ

Operators are distinguished by their identifier below the symbol. The
operator being inverted holds the same identifier. This way, operators
can be distinguished by their identifiers, as in Figure G-1.

These operators are directional commutative

⊕ = ⊕
PQ PQ

P Q Q P

For example, P Q = Q P, P Q = Q P, P→Q = Q←P, P Q = Q P, P Q
= Q P, and P Δ Q = Q Δ P.

The number of the maximal hidden interrelationships between processes
on a path of processes connected by first-order interrelationships is

1
(3) 1 1

2
n n with n− + ≥

P U Q

PU
⊕

PQ
⊕

 ⊕
UQ

G.3 Compositional Analysis Rule

333

Triangular cycles are closed by these hidden interrelationships. Thus, the
total number of triangular cycles in a CSP diagram of 3 or more processes
is determined by the same formula.

The operators on the user-specified interrelationship determine whether
the operator on the hidden interrelationship can be uniquely determined
(derived) or whether it can be randomly selected. In the latter case the
design is ambiguous; i.e. the tool can choose one of many operators that
are valid (specification conflict-free). An ambiguous triangular cycle can
be expressed by a set of algebraic expressions, or by a single ambiguous
algebraic expression.

G.3 Compositional Analysis Rule
The compositional analysis rule applies to triangular cycles for which all
operators are known, either specified by the user, derived, or randomly
selected. In case an operator is a choice of one in a set of operators, this
rule can determine which choices are valid in the process architecture.
The rule returns an algebraic expression or it returns a specification
conflict in case an algebraic expression does not exist.

334 G Compositional analysis rule

The compositional analysis rule is specified as follows:

{ } ()

{ }

()

, , , , , , , , ,

(:)

,

(:)

(:)

PU UQ PQ PQ PU

PQ PU UQ

PU UQ PU UQ

PQ PU PQ UQ

if and then P Q U

note ambiguous solution
else

if then

if then P U Q
note unambiguous solution

else

if then P U Q

note unambiguous solution
e

⊕ = ⊕ ⊕ ∈ → ← Δ Δ ⊕ ⊕

⊕ ∈ ⊕ ⊕

⊕ = ⊕ ⊕ ⊕

⊕ = ⊕ ⊕ ⊕

()
(:)

 -

PQ UQ PU PQ

lse
if then P U Q

note unambiguous solution
else

not conflict free

⊕ = ⊕ ⊕ ⊕

A compressed triangular cycle results in a compressed algebraic
expression. The compressed algebraic expression can be expanded by
substituting sub-processes with their algebraic expressions. Of course, no
algebraic expression can be completed in case a sub-process is in a
specification conflict. The specification conflict needs to be solved by
selecting or specifying another valid operator that results in a
specification conflict-free diagram.

A P P E N D I X H

Pass-by-reference
versus pass-by-value

H Pass-by-reference versus pass-by-value

H.1 Pass-by-reference
Pass-by-reference is a default concept in object-oriented programming
languages for passing objects between objects. This mechanism is fast
and dynamic, but at the same time it can be unsafe when passing
references between objects with multiple threads of control. Multiple
writers and readers that are allowed to access shared objects at the same
time and in an unsynchronized way can easily corrupt the content of the
shared object due to a race hazard. Shared objects must be synchronized
to prevent race hazards. These precautions illustrate that multithreading
is not orthogonal to objects but is intertwined with objects.

The sender process releases its ownership of the object after passing the
reference through the channel. The receiver process will become the new
owner of the object. If necessary, the receiver can pass the reference to
object back to the sender which again claims ownership.

Since Java supports aliases (multiple references to objects) the Java
compiler does not check for ownerships. Thus, passing references in Java
can cause unsafe situations and it is up to the programmer to apply the
rule of ownership to guarantee safety. If Java had a notion of channel
primitives then this information could be used by the compiler to check
for ownership which would make concurrency in Java a lot safer.

 H Pass-by-reference versus pass-by-value

336

A problem with sending references over channels is that this only works
on shared memory systems and pass-by-value is required between
distributed memory systems. Channels with a pass-by-reference
mechanism must create a clone (at the receiver side) and the reference to
that newly created object must be returned to the receiving process. Java
supports cloning and the garbage collector deletes unreferenced objects.
Cloning and garbage collection seem to be useful for business
applications with lots of resources available, but they are time-
consuming and non-deterministic which makes them unpopular for
embedded real-time systems with limited resources and strict timing
requirements.

H.2 Pass-by-value
Pass-by-value is default for occam channels and default for primitive
data types in Java. The producer passes the data (content) of the message
object instead of its reference. The data of the source object will be copied
in the (pre-allocated) destination object at the receiver side. Each process
has a copy to work with, without the overhead of synchronization. The
ownership rule is implicit to the pass-by-value mechanism. The pass-by-
value mechanism is identical for shared memory systems and for
distributed memory systems. Objects can be efficiently reused without
continuously creating and destroying objects. This mechanism works for
programming languages without cloning and garbage collection as for C
and C++.

A problem with pass-by-value on shared memory systems is that the
overhead of communication can be high for objects that are larger than
the size of the reference (pointer, hash-code). The problem is less
significant when objects are small and communication is at a low
frequency. Pass-by-reference can also be implemented with pass-by-
value. In this case, the message object is a container holding a reference
to another object. On communication the reference to the object will be
copied. This inherits all advantages and disadvantages of pass-by-
reference and requires the help of an object container. Deep copying (i.e.

H.3 Message passing for control software

337

recursively copying inner objects) can also be part of the mechanism, but
then one must avoid cyclic references.

H.3 Message passing for control
software

Control software favours deterministic behaviour, small packaged
communication, and transparency between shared memory systems and
distributed memory systems. Pass-by-value fulfils these requirements.
As long as small objects are passed, the pass-by-value has advantages
over pass-by-reference. On these grounds the pass-by-value mechanism
and data channels are commonly used for control software.

The performance of pass-by-reference and pass-by-value not only
depend on the size of message but also depend on the overall performance
of the hardware and software architecture. The architecture determines
how frequent objects are passed and how often memory must be
allocated/destroyed or can be reused. In most CSP-based applications
one does not share objects other than channel- and barrier-objects.
Sharing objects between processes is rare. The alternative of sharing an
object is that the object is part and under control of a server process that
is connected with shared channels to its clients. The client processes
synchronize on channels or barriers and follows a protocol of interaction
with the server process. This is thread-safe and the server process
provides a clear behavioural description.

Notation

a X∈ set membership, a is an element in set X

X Y⊆ X is a subset of Y (= .a a X a Y∀ ∈ ⇒ ∈)

{ }, ,a b c set with elements a, b, and c

{} ,∅ the empty set

X Y∪ union

X Y∩ intersection

X Y− difference (= { }|a X x Y∈ ∉)

 natural numbers (= { }0,1,2,...)

\{0} natural numbers without 0 (= { }1,2,...)

e P→ prefixing

? :x A P→ prefix choice

P Q→ single action transition

P Q⊕ arbitrary composition

;P Q sequential composition

P Q synchronous parallel

X YP Q alphabetic parallel

X
P Q generalized parallel

P Q⏐⏐⏐ interleaving

 Notation

340

P Q prioritized synchronous parallel

P Q internal or nondeterministic choice

P Q external choice

P Q unequally-prioritized external choice

P Q resolute equally-prioritized external choice

P Q resolute unequally-prioritized external choice

P Q preference equally-prioritized external choice

P Q preference unequally-prioritized external choice

iP QΔ interrupt composition on event i

P QΔ exception composition

\P X hiding

P cond Q P if cond is true else Q

 the empty sequence

1,..., na a trace of events containing a1,..,an in that order

^s a concatenation of a to trace s

(), ,P Q ⊕ relationship with ⊕ , from P to Q

(), ,P Q ⊕ relationship with ⊕ , from Q to P

(), ,P Q ∅⊕ relationship with ⊕ , from P to Q,
with P and Q being neighbours

PQ
⊕ operator between P and Q, from P to Q

PQ
⊕ inverse operator between P and Q, from P to Q

Σ alphabet of all communications

 termination event

Notation

341

. :process id Type compound identifier label

?c x input x from channel c

!c y output y to channel c

*b synchronize on barrier b

*P infinite recursion

. ;X P Xμ recursion

()pri a function that returns the priority index of the
thread with the highest priority engaging in
communication event a.

Bibliography

4Links (2003). SpaceWire PCI Interfaces, at URL
http://www.4links.co.uk/spacewire_pci.htm.

20-sim (2003). Control Labs Products, at URL http://www.20sim.com.

Analog Devices (2003). Datasheet ADSP 21992, Analog Devices, at URL
http://www.analog.com/UploadedFiles/Data_Sheets/52993570ADSP-
21992_0.pdf.

Arnold, K., J. Gosling and D. Holmes (2000). The Java Programming Language Third
Edition, Addison-Wesley, San Francisco.

Awad, M., J. Kuusela and J. Ziegler (2002). Octopus -- Object-oriented technology for real-
time systems, Nokia, at URL http://www-nrc.nokia.com/octopus/.

Balkema, W., P. Boer, E. Dertien, T. v. Engelen and G. v. Oort (1999). Arty, University
of Twente, june 1999

Barnes, J. (1988). Ada 95, Second Edition, Addison Wesley.

Barrett, G. (1993). occam 3 reference manual (March 31 1992 draft), INMOS, at URL
http://wotug.ukc.ac.uk/parallel/occam/documentation/.

Barrett, G., M. Goldsmith, G. Jones and A. Kay (1988). The meaning and implementation
of PRI ALT in occam, 9th occam User Group, Occam and the Transputer--
Research and Applications, C. Askew, IOS Press, Southampton, pp. 37-46.

Beckett, D. (1994). Biography Willam of Ockham, University of Kent, at URL
http://wotug.ukc.ac.uk/parallel/www/occam/occam-bio.html.

Beneder, T. (1998). Arty, University of Twente, july 1998

Bosch (2003). Robert Bosch GmbH, at URL http://www.can.bosch.com.

Brinch-Hansen, P. (1972). Structured Multiprogramming, Communications of the ACM,
July 1972, Volume 15, Issue 7, pp. 574-578.

Brinch-Hansen, P. (1973). Operating System Principles, Prentice-Hall International,
Englewood Cliffs, NJ.

 Bibliography

344

Broenink, J. F. and G. H. Hilderink (2001). A structured approach to embedded control
systems implementation, Proceedings of the IEEE International Conference on
Control Applications, M. W. Spong, D. Repperger and J. M. I. Zannatha,
Mexico City, Mexico, September 5-7, 2001, pp. 761-766.

Burns, A. (1987). Occam's priority model and deadline scheduling, 7th Occam User Group
& International Workshop on Parallel Programming of Transputer based
Machines, E. T. Muntean, LGI-IMAG, Grenoble.

Burns, A. and A. Wellings (1990). Real-Time Systems and their Programming Languages,
International Computer Science Series, Addison-Wesley Publishing Company.

CMX-RTX (1998). CMX-RTX -- Real-Time Multi-Tasking Operating System for
microporcessors, microcontrollers and DSPs, at URL http://www.cmx.com/.

Cornhill, D., L. Sha, J. Rajkumar and H. Tokunda (1978). Limitations of Ada for real-time
scheduling, Proceedings of the International Workshop on Real Time Ada
Issues, ACM Ada Letters, pp. 33-39.

Cronie, H. S., F. W. Hoeksema and C. H. Slump (2003). A CSP-based Processing
Architecture for a Flexible MIMO-OFDM testbed, Communicating Process
Architectures 2003, J. F. Broenink and G. H. Hilderink, IOS Press, University of
Twente, Enschede, The Netherlands, 7-10 September 2003, Volume 61, pp. 225-
234.

Davies, J. and S. Schneider (1995). Real-Time CSP

DEC (2003). Alpha processor 21364, at URL
http://www.theregister.co.uk/content/archive/6610.html.

Dijkstra, E. W. (1965). Solution of a problem in concurrent programming control,
Communications of the ACM, September 1965, Volume 8, Issue 9, p. 569.

Dijkstra, E. W. (1968a). Cooperating sequential processes, In Programming Languages, F.
Genuyes, London Academic Press.

Douglass, B. P. (1999). Doing Hard Timer: Developing Real-Time Systems with UML,
Objects, Frameworks, and Patterns, Object Technology Series, Booch, Jacobson
and Rumbauch, Addison Wesley Longman, Inc., Reading.

dSPACE (2002). Real Time Interface, at URL www.dspace.com.

Engelen, T. H. v. (2004). CTC++ enhancements towards fault tolerance and RTAI,
University of Twente, August 2004, Report number 022CE2004.

Engelen, T. H. v. (2004). CTC++ for the Arty Robot, University of Twente, August 2004,
Report number 024CE2004.

Bibliography

345

ESD (2003). Controller Area Network (CAN), ESD gmdb, at URL http://www.esd-
electronics.com/german/PDF-file/CAN/Englisch/intro-e.pdf.

FDR (2004). FDR2, Formal Systems Ltd., at URL http://www.fsel.com/.

FSMLabs (2002). Real-Time Linux, at URL http://www.fsmlabs.com/.

Gell-Mann, M. (1995). What is complexity? John Wiley and Sons Inc., Volume 1, at URL
http://www.santafe.edu/sfi/People/mgm/complexity.html.

GNU (1996). The GNU Project and the Free Software Foundation, at URL
http://www.gnu.org/.

Hatley, D. J. and I. A. Pribhai (1987). Strategies for Real-Time System Specification,
Dorset House Publishing, New York, NY.

Hilderink, G. H. (2002). A Graphical Modelling Language for Specifying Concurrency based
on CSP, IEE Proceedings Software, IEE, April 2003, Volume 150, pp. 108-120, '2'
2.

Hilderink, G. H., A. W. P. Bakkers and J. F. Broenink (2000). A Distributed Real-Time
Java System Based on CSP, The Third IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC-2000), IEEE Computer
Society, Newport Beach, California, March 15-17, 2000, pp. 400-407.

Hilderink, G. H. and J. F. Broenink (2003). Sampling and Timing: a Task for the
Environmental Proces, Commmunicating Process Architectures 2003, J. F.
Broenink and G. H. Hilderink, IOS Press, University of Twente, Enschede, 7-10
September 2003, Volume 61.

Hilderink, G. H., J. F. Broenink and A. W. P. Bakkers (1998). A new Java thread model
for concurrent programming of real-time systems, Real-Time magazine, Q1 1998, '1'
1.

Hilderink, G. H., J. F. Broenink and A. W. P. Bakkers (1998). Software design method for
heterogenous embedded systems, 17th Benelux Meeting, Mierlo, NL, 4-6 March
1998, pp. 183-183 (abstract).

Hilhorst, R. A., J. van Amerongen, P. Löhnberg and H. J. A. F. Tulleken (1994).
Supervisory control of mode-switch processes, Automatica, Volume 30, Issue 8, pp.
1319-1331.

Hiroshi, S. (1997). What is Occam's Razor, at URL
http://math.ucr.edu/home/baez/physics/General/occam.html.

Hoare, C. A. R. (1974). Monitors: An Operating System Structuring Concepts.,
Communications sof the ACM, Volume 17, Issue 10, pp. 547-557.

 Bibliography

346

Hoare, C. A. R. (1978). Communicating Sequential Processes, CACM, Volume 21, Issue 8,
pp. 666-677.

Hoare, C. A. R. (1985). Communicating Sequential Processes, Prentice-Hall, London, UK.

Inmos (1988). occam 2 Reference Manual, International Series in Computer Science, C.
A. R. Hoare, Prentice Hall.

Intel (1996). The Intel386 Processor Family, at URL www.intel.com.

Isermann, R., J. Schaffnit and S. Sinsel (1999). Hardware-in-the-loop simulation for the
design and testing of engine-control systems, Control Engineering Practice 7, 18
Augustus 1999, pp 643-653.

Ivimey-Cook, R. (1999). Legacy of the Transputer, WoTUG 22: Architectures, Languages
and Techniques for Concurrent Systems, B. M. Cook, IOS Press, University of
keele, UK, April 11-14, 1999.

Jones, G. (1987). On Guards, 7th Occam User Group & International Workshop on
Parallel Programming of Transputer based Machines, E. T. Muntean, LGI-
IMAG, Grenoble.

Jovanovic, D. S., G. H. Hilderink and J. F. Broenink (2001). Integrated Design Tool for
Embedded Control Systems, Process 2001 Workshop, K. Karelse, Veldhoven, The
Netherlands, October 18, 2001, pp. 121-126.

Jovanovic, D. S., G. H. Hilderink and J. F. Broenink (2002). A Communicating Threads
(CT) Case Study: JIWY, Communicating Process Architecture 2002, J. S. Pascoe,
P. H. Welch, R. J. Loader and V. S. Sunderam, IOS Press, University of
Reading, UK, Volume 60, pp. 311-320.

Jovanovic, D. S., B. Orlic, G. K. Liet and J. F. Broenink (2004). gCSP: A Graphical Tool
for Designing CSP Systems, Communicating Process Architectures 2004, I. R.
East, J. M. R. Martin, D. Duce and M. Green, IOS Press, Oxford Brooks
University, UK, 5-8 September 2004, Volume 62, pp. 233-251, at URL
http://www.wotug.org/.

Kernigham, B. W. and D. M. Ritchie (1988). The C Programming Language, Second
Edition, Prentice Hall, Inc.

KROC (1999). The KroC home page, at URL
http://www.cs.ukc.ac.uk/porjects/ofa/kroc.

Labrosse, J. J. (1992). uC/OS The Real-Time Kernel, Publishers Group West, Emeryville,
CA 94662.

Lahpor, G. J. (1998). The design of a low-cost multi-processor system, Control
Engineering, University of Twente, Enschede.

Bibliography

347

Lammertink, T. (2003). Joystick Controller for JIWY, University of Twente, June 2003

Lau, F. C. M. and K. M. Shea (1988). Mapping a Process Network onto a Processor
Network, 9th occam User Group, Occam and the Transputer--Research and
Applications, C. Askew, IOS Press, Southampton, pp. 91-112.

Lauer, H. and E. Satterwaite (1979). The impact of Mesa on system design, Proceedings of
the 4th International Conference on Software Engineering, IEEE, pp. 174-182.

Lawrence, A. E. (1998). Extending CSP, 21th World Occam and Transputer User
Group Technical Meeting, Architectures, Languages and Patterns for Parallel
and Distributed Applications, P. H. W. a. A. W. P. Bakkers, IOS Press,
Canterbury, United Kingdom, 5-8 April 1998, Volume 52, pp. 111-131.

Lewis, B. and D. J. Berg (1996). Thread Primer: A guide to multithreaded Programming,
Sun Microsystems Press, Mountain View, USA.

Maggee, J. and J. Kramer (1999). Concurreny: state models & Java programs, Worldwide
series in computer science, John Wiley & Sons, New York, USA.

Martin, J. M. R. and S. A. Jassim (1997). How to Design Deadlock-Free Networks Using
CSP and Verification Tools -- A Tutorial Introduction, Parallal Programming and
Java -- WoTUG-20, A. Bakkers, IOS Press, Enschede, The Netherlands, 13-16
April 1997, Volume 50, pp. 326338.

Martin, J. M. R. and S. A. Jassim (1997). A Tool for Proving Deadlock Freedom, Parallel
Programming and Java -- WoTUG-20, A. Bakkers, IOS Press, Enschede, The
Netherlands, Volume 50, pp.1-16.

McColl, W. F. (1996). Scalable Computing, Computer Science Today: Recent Trends
and Developments, J. v. Leeuwen, Springer Verlag, Volume number 1000 in
Lecture notes in Computer Science, pp. 41-61.

Microsoft (2003). Visual C# Developer Center, at URL
http://msdn.microsoft.com/vcsharp/.

Modderkolk, P. (2003). Concurrent motor controller for Arty, University of Twente,
October 2003

National Instruments (2004). Real Time Labview Module, Add-On Software for Designing
Reliable, Deterministic Systems, at URL http://www.labview.com/.

Nissanke, N. (1997). Realtime Systems, Prentice-Hall International Series in Computer
Science, Prentice-Hall.

Orlic, B., H. Ferdinando and J. F. Broenink (2003). CAN Fieldbus Communication in
CSP-based CT library, Proceedings of the 4th PROGRESS Symposium on
Embedded Systems, NBC Nieuwegein, The Netherlands, October 22, 2003.

 Bibliography

348

Page, I. (2001). The Handel-C Language, at URL at URL:
http://www.celoxica.com/methodology/handelc.asp.

PCI-6024E, N. (2000). National Instruments PCI-6024E Multifunction DAQ, at URL
http://www.ni.com.

ProBE (2003). Process behavior Explorer -- User Manual, Formal Systems Ltd., at URL
http://www.fsel.com.

Ptolemy (2003). The Ptolemy II Project, at URL http://ptolemy.eecs.berkeley.edu/.

QNX (1998). QNX Neutrino RTOS, at URL http://www.qnx.com.

RadiSys (2002). OS-9, at URL http://www.radisys.com/.

Roscoe, A. W. (1987). Routing messages through networks: an excercise in deadlock
avoidance, 7th Occam User Group & International Workshop on Parallel
Programming of Transputer based Machines, E. T. Muntean, LGI-IMAG,
Grenoble.

Roscoe, A. W. (1998). The Theory and Practice of Concurrency, Series in Computer
Sciences, C. A. R. Hoare and R. Bird, Prentice-Hall.

RTAI (2002). Realtime Linux Application Interface for Linux, at URL
http://www.aero.polimi.it/~rtai/.

Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy and W. Lorensen (1991). Object-
Oriented Modeling and Design, Prentice-Hall International Editions, Englewood
Cliffs, N.J.

Sanvido, M. A. A. and V. Cechticky (2002). Testing embedded control systems using
hardware-in-the-loop simulation and temporal logic, IFAC 15th Triennial Worl
Congress, Barcelona, Spain, July 2002.

Schneider, S. (2000). Concurrent and Real-time Systems, Worldwide series in computer
science, S. U. U. D. Barron and B. U. U. P. Wegner, John Wiley & Sons,
Chichester, UK.

Selic, B., G. Gullekson and P. T. Ward (1994). Real-Time Object-Oriented Modeling
(ROOM), John Wiley & Sons, Inc.

Sha, L., R. Rajumar and J. Lehoczky (1990). The Priority Inheritance Protocol: An
Approach to Real-Time Synchronization, IEEE Transactions on Software
Engineering, Volume 39, Issue 9, pp. 1175-1185.

Silberschatz, A. and P. Galvin (1994). Operating Systems Concepts, Addison-Wesley,
Reading, Massachusetts, USA.

Skeptic (2004). Occam's Razor, at URL http://www.skepdic.com/occam.html.

Bibliography

349

Smith, L. (2002). JIWYNET, University of Twente, August 2002

Smith, M. L., C. E. Hughes and K. W. Burke (2003). The Denotational Semantics of View-
Centric Reasoning, Communicating Process Architectures 2003, J.F.Broenink
and G.H.Hilderink, IOS Press, Enschede, Volume 61, pp. 91-96.

SpaceWire (2003). Overview of SpaceWire, at URL
http://www.estec.esa.nl/tech/spacewire/.

SPoC (1998). The Southampton Portable occam Compiler (SPoC), at URL
http://gales.ecs.soton.ac.uk/software/spoc/.

Stanley-Marbell, P. (2003). Inferno Programming with Limbo, John Wiley & Sons.

Stephan, R. A. (2002). Real-time Linux in Control Applications Area, Control
Engineering, University of Twente, Enschede.

Stroustrup, B. (2000). The C++ Programming Language, Special Edition, A. T. Labs,
Addison Wesley, New Jersey.

Sun Microsystems, L. (2004). Java 2 Platform, Second Edition 1.5.0, Software Development
Kit 5.0, at URL java.sun.com.

Texas Instruments (1996). TMS320F240 DSP Controller, Texas Intruments, at URL
http://focus.ti.com/lit/ds/sprs042e/sprs042e.pdf.

Texas Instruments (1999). TMS320F6711 DSP Controller, Texas Intruments, at URL
http://focus.ti.com/lit/ds/symlink/tms320c6711.pdf.

uC/OS (1998). Micrium uC/OS-II -- The Real-Time Kernel, at URL http://www.ucos-
ii.com/.

UML (1998). Unified Modeling Language 1.4, OMG, at URL http://www.uml.org/.

van Amerongen, J. (2003). Mechatronic design, Mechatronics, 2003, Issue 13, 1045-1066.

van Amerongen, J. and P. C. Breedveld (2003). Modelling of physical systems for the
design and control of mechatronic systems, Annual Reviews in Control 27, pp 87-
117.

van Breemen, A. J. N. (2001). Agent-based multi-controller systems, Control Engineering,
Twente University Press, Enschede, 232.

van Drunen, J. M. (2000). Realization of link drivers implementing CSP-channels on 20-
controller, Control Laboratory

Electrical Engineering, University of Twente, Enschede.

Ward, P. T. and S. J. Mellor (1985). Structured Development Techniques for Real-Time
Systems, Prentice-Hall, Englewood Cliffs, NJ, Volume 3 volumes.

 Bibliography

350

Welch, P. H. (1989). Graceful Termination -- Graceful Resetting, Applying Transputer-
Based Parallel Machines, Proceedings of OUG 10, Occam User Group, IOS
Press, Enschede, Netherlands, April 1989, pp. 310-317.

Welch, P. H. (1996). Wot, no chickens? 25 September 1996, at URL
http://wotug.ukc.ac.uk/parallel/groups/wotug/java/discussion/3.html.

Welch, P. H. and P. D. Austin (1999). The JCSP home page, at URL
http://www.cs.ukc.ac.uk/projects/ofa/jcsp.

Welch, P. H. and A. Bakkers (1992). In Parallel, O. universiteit, Euroterm Maastricht,
Heerlen.

Wijbrans, K. C. J. (1993). Twente Hierarchical Embedded Systems Implementation by
Simulation: a structured method of controller realization, Electrical Engineering -
Control Laboratory, University of Twente, The Netherlands, Enschede.

Wijbrans, K. C. J., J. v. Amerongen, A. W. P. Bakkers and J. F. Broenink (1993). Twente
Hierarchical Embedded Systems Implementation by Simulation: a structured approach
to controller realisation on transputers, Journal A, Volume 34, Issue 1, pp. 51-59.

WindRiver (2002). VxWorks -- Real-time operating system, at URL
http://www.windriver.com/.

Yourdon, E. N. (1989). Modern Structured Analysis, Prentice Hall, Englewood Cliffs,
NJ.

Yourdon, E. N. and L. L. Constantine (1979). Structured Design, Prentice-Hall,
Englewood Cliffs, NJ.

Curriculum vitae

Gerald Hilderink was born on September 23rd,
1968 in Haaksbergen, the Netherlands. In 1992,
after successfully completing the study Technical
Computer Science at the Hogeschool Enschede in
Enschede, he started his study Informatics at the
University of Twente in Enschede, the
Netherlands. In 1997, he received his M.Sc.
degree in Informatics in major Embedded
Systems at this university.

During his Master’s project at the laboratory of Control Engineering, he
investigated the possibilities of applying the theory of Communicating
Sequential Processes (CSP) to the programming language Java. This work
resulted in a masters’ thesis which illustrated the advantages of using
CSP concepts over the Java thread model for building reliable and safe
concurrent software in Java. This work resulted in a “Best Student
Award” paper and an article in Real-Time Magazine 1998. This work has
interested many people and has become part in lectures at the University
of Twente and other universities all over the world.

In February 1997, he started his Ph.D. research at the laboratory of
Control Engineering at the University of Twente. This research was
based on his Masters’ thesis project and aimed at the development of a
sound and formal foundation for developing high-performance control
software. He realized to bring the look and feel of CSP, occam, and
transputer technology to heterogeneous computer systems and object-
oriented programming languages. He developed the Communicating
Threads (CT) library, which provides CSP concepts for the programming
languages Java, C, and C++.

 Curriculum vitae

352

This research continued in a STW/PROGRESS (TES.5224) project which
started in 2001. He worked at the project in a PostDoc position. The
project applies CT and CSP diagrams to embedded control systems and
software tool development. In September 2003, he organized together
with Jan Broenink the Communicating Process Architectures 2003
conference in Enschede.

Gerald Hilderink has always been interested in embedded systems and
problem solving. He recognizes the importance of the interaction
between theory and practice in order to design reliable embedded
systems.

