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Summary 

In this thesis, we are concerned with the development of concurrent 
software for embedded systems. The emphasis is on the development of 
control software. 

Embedded systems are concurrent systems whereby hardware and 
software communicate with the concurrent world. Concurrency is 
essential, which cannot be ignored. It requires a proper handling to avoid 
pathological problems (e.g. deadlock and livelock) and performance 
penalties (e.g. starvation and priority conflicts). Multithreading, as such, 
leads to sources of complexity in concurrent software. This complexity is 
considered frightening, because it complicates the software designs and 
the resulting code. Moreover, this paradigm complicates the 
understanding of the behaviour of concurrent software. 

A paradigm with a precise understanding of concurrency is essential. In 
this thesis, a methodology is proposed that comprises a paradigm of 
fundamental aspects of concurrency. These fundamental aspects are 
derived from the Communicating Sequential Processes (CSP) theory. CSP is 
a theory of programming that is developed by Hoare, Brookes, and 
Roscoe. CSP comprises fundamental concepts useful for precisely 
describing and studying concurrent systems. These concepts are based 
on processes and events. Processes and events are abstract entities, more 
abstract than objects. Processes and events are essential in describing and 
reasoning about the real-time behaviour of process architectures. A 
process architecture describes a (sub-) program as a composition of 
communicating processes. 

The proposed methodology brings a subset of CSP to practice in order to 
specify, design, and implement process architectures. The CSP concepts 
bring forth a glue-logic between these phases in the development 
trajectory. Furthermore, these concepts offer technical solutions, which 
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have been enhanced with notion of priorities, exception handling, and 
timing. The precise semantics of the concepts and their restrictions 
provide the guidelines to create reliable and robust concurrent software. 
The abstraction and separation of well-defined concerns contribute to 
managing complexity in concurrent software. 

The proposed methodology defines the following ingredients: 

1. A graphical modelling language defines graphical notations and 
rules that are derived from CSP. The graphical modelling 
language is used for specifying, designing, and graphically 
programming process architectures. This results in CSP diagrams. 

2. An object model implements the CSP concepts by means of object-
oriented techniques. This model can be implemented in object-
oriented programming languages. This results in the CSP libraries 
for Java, C (in object-oriented style) and C++. 

The graphical modelling language and the object model go together. CSP 
diagrams are used to describe and to analyse process architectures. A 
CSP library is used to implement process architectures in an object-
oriented programming language. This methodology uses process-
oriented and object-oriented techniques, and hides thread-oriented 
techniques. 

The proposed methodology is applied to control applications on 
embedded computer systems. 

 



 

Samenvatting 

In dit proefschrift houden we ons bezig met de ontwikkeling van 
concurrent software voor ingebedde systemen. De nadruk ligt op de 
ontwikkeling van regelsoftware. 

Ingebedde systemen zijn concurrent systemen, waarbij hardware en 
software communiceren met de concurrent wereld. Concurrency is 
wezenlijk en kan niet worden genegeerd. Het vereist een goede 
behandeling die pathologische problemen (zoals deadlock en livelock) en 
prestatieproblemen (zoals starvation en prioriteitconflicten) dienen te 
voorkomen. Multihreading, als zodanig, leidt tot een bron van 
complexiteit in concurrent software. Deze complexiteit wordt als 
afschrikwekkend ervaren, want het bemoeilijkt de softwareontwerpen en 
de resulterende code. Bovendien bemoeilijkt dit paradigma het begrijpen 
van het gedrag van concurrent software. 

Een paradigma met een precieze kennis van concurrency is essentieel. In 
dit proefschrift wordt een methodologie voorgesteld dat een paradigma 
van fundamentele concurrency aspecten behelst. Deze fundamentele 
aspecten zijn ontleend aan de Communicating Sequential Processes (CSP) 
theorie. CSP is een theorie over programmeren die is ontwikkeld door 
Hoare, Brookes en Roscoe. CSP behelst fundamentele concepten die 
geschikt zijn voor het nauwkeurig bestuderen van concurrent systemen. 
Deze concepten zijn gebaseerd op processen en events. Processen en 
events zijn abstracte entiteiten, abstracter dan objecten. Processen en 
events zijn noodzakelijk voor het beschrijven van en het redeneren over 
het real-time gedrag van procesarchitecturen. Een procesarchitectuur 
beschrijft een (deel-) programma als een samenstelling van 
communicerende processen. 

De voorgestelde methodologie brengt een deelverzameling van de CSP 
theorie naar de praktijk voor het specificeren, ontwerpen en 
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implementeren van proces architecturen. Deze CSP concepten leiden tot 
een perfecte passing van deze fasen in het ontwikkeltraject. Bovendien 
bieden deze concepten technische oplossingen, welke zijn aangevuld met 
prioriteiten, foutenafhandeling en notie van tijd. De precieze 
betekenissen van de concepten en hun beperkingen zorgen voor 
richtlijnen om betrouwbare en robuuste ingebedde regelsoftware te 
ontwikkelen. De abstractie en de scheiding van goed gedefinieerde 
belangen dragen bij tot het beheersen van complexiteit in concurrent 
software. 

De voorgestelde methodologie definieert de volgende ingrediënten: 

1. Een grafische modelleringstaal definieert grafische notaties en regels 
die afgeleid zijn van CSP. De grafische modelleringstaal wordt 
gebruikt voor het specificeren, ontwerpen en grafisch 
programmeren van procesarchitecturen. Dit resulteert in 
zogenaamde CSP diagrammen. 

2. Een object model implementeert de CSP concepten door middel 
van object-georiënteerde technieken. Dit model kan vervolgens 
worden geïmplementeerd in object-georiënteerde 
programmeertalen. Dit resulteert in CSP bibliotheken voor Java, C 
(in object-georiënteerde stijl) en C++. 

De grafische modelleringstaal en het object model sluiten op elkaar aan. 
CSP diagrammen worden gebruikt om procesarchitecturen te beschrijven 
en te analyseren. Een CSP bibliotheek wordt gebruikt om 
procesarchitecturen te implementeren in een object-georiënteerde 
programmeertaal. Deze methodologie maakt gebruik van proces-
georiënteerde en object-georiënteerde technieken en verbergt thread-
georiënteerde technieken.  

De voorgestelde methodologie is toegepast op regelapplicaties voor 
ingebedde computer systemen. 

 



 

C H A P T E R 1 

Introduction 
1 Introduction 

1.1 Concurrency and complexities in 
embedded control software 

In this thesis, we are concerned with the development of embedded 
control software for mechatronic systems. Mechatronics deals with 
controlled mechanical systems that are designed as a whole. Mechatronic 
design is the integrated design of a mechanical system and its embedded 
control system. A mechatronic design approach leads to more flexible 
and cost effective machines with better performance (van Amerongen, 
2003). Examples of mechatronic systems are robots, production 
machines, modern cars, airplanes, CD- and DVD-players, etc. The 
controller part of a mechatronic system is mostly realized in software as 
an embedded control system. Embedded control systems require safety, 
reliability, robustness, and the guarantee that their processes meet their 
deadlines for a safe and reliable operation of the entire system. Those 
systems are hard real-time and inherently concurrent since they interact 
and respond in time to a concurrent world. 

The total behaviour of a mechatronic system is described by its physical-
system dynamics, control laws, and the characteristics of the software 
and hardware. These artefacts are inherently concurrent in which all 
components participate and aggregate. Concurrency naturally fulfils a 
glue-logic between the different artefacts and components in software 



 1. Introduction 2 

and hardware. It offers the means to integrate components and take 
away discontinuities between them. In fact, concurrency offers the tools 
to manage complexities. 

Embedded control software is considered both sophisticated and 
complex. It has to deal with several sources of complexities in software 
engineering, such as: 

• multithreading, 

• interrupt handling, 

• exception handling, 

• inter-processor communication, 

• priority scheduling and preemption, 

• precise timing and sampling, 

• reactivity and responsiveness, 

• safe-guarding and fault-tolerance. 

These sources of complexities concern concurrency in both software and 
hardware. Software design and programming tools, languages, and  
methods have to deal with these sources of complexities. Commonly, ad-
hoc solutions are offered that deal with these issues. Ad-hoc solutions are 
individual solutions meant for one thing only. It is up to the user to 
integrate these ad-hoc solutions into a concurrent framework. This 
process is being complicated when a paradigm of loosely coupled 
concepts are used. These ad-hoc solutions require a common level of 
abstraction in order to understand the separate concerns as a whole and 
in a systematic way. 

Software design and programming tools, languages, and methods must 
capture a good understanding of concurrency. Concurrency should be 
driven by coherent and formal concepts and not by ad-hoc solutions. 
Therefore, the foundation that underlies these tools, languages, and 
methods must contain coherent concepts that integrate the previously 
mentioned sources of complexities and abstract away from ad-hoc 
solutions. 
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The semantics of these concepts must be preserved during the 
development of embedded systems. In this thesis, a methodology is 
proposed that captures a good understanding of concurrency as a whole, 
in a natural and systematic way. A keystone of this methodology is 
Communicating Sequential Processes (CSP) (Hoare, 1985; Roscoe, 1998). CSP 
is a theory embracing fundamental concepts describing and 
understanding concurrency in a formal and systematic way. The 
foundation that underlies the proposed methodology is suitable for 
developing embedded software, in particular, embedded control 
software. 

1.2 Scope of subject 

1.2.1 Embedded control 

The following definitions are frequently used in this thesis, which are 
derived from common definitions found in literature and on the internet.  

An embedded system is a combination of computer hardware and software 
that is embedded in a larger system, hidden from the end-user. A 
common characteristic of an embedded system is that it is programmed 
to perform a set of functions that minimizes end-user or operator 
intervention; thus an embedded system automates a product. 

A real-time system is one in which the correctness of the system depends 
not only on the logical results, but also on the time at which the results 
are produced. 

An embedded control system is an embedded real-time system with the task 
of controlling a physical process. An embedded control system consists 
of one ore more control loops (i.e. controller processes) interacting with a 
physical process through sensors, actuators and its input/output 
interface. A blueprint of an embedded control system, as part of a 
mechatronic system, is depicted in Figure 1-1. 
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Figure 1-1 Blueprint of a mechatronic system. 

A sensor is a device that responds to a physical stimulus (heat, light, 
pressure, motion, flow, and so on), and produces a measurable 
corresponding electrical signal. This electrical signal is translated by the 
computer hardware into a digital value that is consumed by the control 
software. 

An actuator is a device which performs a physical action to an electrical 
stimulus generated by the computer hardware. 

The electrical circuits that perform signal conversion between the 
computer, sensors, and actuators are called the input/output interface (I/O 
interface) of the embedded computer system. The arrows between the 
embedded control system and the plant are usually electrical signals. The 
arrows between the embedded control system and its I/O interface are 
digital signals and the arrows between the plant and the sensors or 
actuators are physical stimuli. 

The controller process interacts with one or more physical processes. The 
behaviour of this control process is composed by at least two parallel 
processes that engage in communication at discrete moments in time. 
Conceptually, a controller process is event-driven, which may engage in 
respectively periodical communication events, sporadic communication 
events, or perhaps a mix of both. The communication events represent 
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the completion of signal conversion (e.g. sampling and actuation), based 
on fixed or variable time intervals. In this thesis, hard real-time control 
systems are considered for which every missed deadline is an error. 
Therefore, the communication events must happen within a deadline or 
at precise moments in time. The real-time behaviour of an embedded 
control system is observable by tracing the events. These traces are 
suitable to guarantee the proper functioning of the system. 

Embedded control systems are often part of larger heterogeneous 
systems connected by their I/O interfaces. These systems vary from 
single central processor unit (CPU) systems that are compact and 
constrained by a limited amount of resources (e.g. memory and CPU 
speed), to single CPU systems with ample system resources, or to 
multiple CPU systems distributed over a plant. Considering the variety 
of concerns in hardware and software and the variety of ad-hoc solutions 
to these concerns, it is not surprising that embedded software 
engineering is often considered complex and specialized, even without 
considering the difficulties of control law design. A programming model 
is required which deals with this complexity in an elegant way. Such a 
programming model is usually based on a real-time kernel (RTK) 
technology that provides an abstract layer of services, which controls the 
hardware and schedules multiple threads of control. This layer 
comprehends an application programming interface (API) with desirably 
low overheads. A RTK can exist as a microkernel real-time operating 
system (RTOS) (e.g. QNX (1998), CMX-RTX (1998) or μC/OS (1998)) or as 
part of a larger real-time operating system (e.g. Real-Time Linux 
(FSMLabs, 2002; RTAI, 2002), VxWorks (WindRiver, 2002), and OS9 
(RadiSys, 2002)). These RTKs provide loosely coupled imperative 
primitives (e.g. thread control and synchronization, signal handling, and 
timed interrupt handling) which widen the number of features but 
complicate writing reliable concurrent software at the same time. No 
RTK is the same and their semantics and behaviour are not uniform for 
real-time systems. One may realize that this programming paradigm is 
meant to instruct the processor, but this paradigm is too low level and 
too detailed for the human understanding of the structure and behaviour 
of control software. Furthermore, the API incorporates ad-hoc solutions 
to pathological problems, such as deadlock and livelock, and priority 
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inversion. This is done by using respectively asynchronous 
communication and priority inheritance techniques to cure illnesses in 
the implementation rather than providing guidelines or rules to prevent 
them in the first place. 

1.2.2 Computer-aided design tools 

Computer-aided design (CAD) tools for developing control software, 
such as the Real Time Interface (RTI) from dSPACE (2002) and the Real 
Time Labview Module (RTLM) from National Instruments (2004), are 
world-widely known and used for creating control software. These tools 
deliver a powerful graphical development environment for signal 
acquisition, measurement analysis, data presentation, and model-based 
control system design. Essentially, they give the flexibility of a 
programming language without the complexity of traditional 
development tools and give all-in-one solutions for dedicated hardware. 
Their success is due to the automation of code generation and system 
monitoring, which negates the need for the control engineer to code. The 
tools are guided with documentation and are easy of use. 

Under the hood of RTI and RTLM, these tools hide a rigid software 
framework that is performed by the embedded computer system. The 
core of the generated code is basically a simulator that comprises a 
sequential state machine, which is timed on constant timing intervals. 
This sequencing makes model checking for tracing pathological problems 
unnecessary, but the sequential framework becomes complicated when 
concurrency is unavoidable. Concurrency involves performing 
distributed tasks in parallel, triggering tasks at a specified time interval, 
and assigning equal or different priorities to each parallel task. This is 
specified in a process diagram, apart from block diagrams that describe 
the functionality of the controller. A process diagram specifies the tasks 
(specified by block diagrams) to be performed in parallel or on (timed) 
interrupts. Once the block diagrams and process diagram have been 
completed, the controller is up and running on the processor board by a 
few user actions. 
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Despite the flexibility and user-friendliness of these CAD tools, the 
concurrency paradigm that is used in the translation from a process 
diagram to its implementation is based on RTOS or RTK primitives. The 
semantics of these primitives may not be uniform and these primitives 
complicate the code. The automation from design to code, results in a 
one-way transformation disallowing round-trip engineering. 
Consequently, customizing the framework for an initially unsupported 
computer target is a costly task that is dedicated for specialists. 

A concurrency paradigm should have been used that scales well with 
complexity, is highly portable, and that is uniform. CSP offers a 
concurrency paradigm that fulfils these requirements. CSP provides a 
good foundation for CAD tools to develop control software. Examples of 
which can be found in THESIS (1993) and Ptolemy II (2003). These 
methods describe two different control software design strategies. These 
strategies benefit from using CSP for building concurrent control 
software in an elegant way. THESIS and Ptolemy use simplified CSP 
constructs, which are restricted for a broader use. 

1.2.3 Multithreading 

Concurrent software involves multithreading. Multithreading is the 
ability to have more than one task occurring in a program (Lewis and 
Berg, 1996; Silberschatz and Galvin, 1994). A thread is a set of statements 
or coherent functions that execute sequentially at the same priority. 
Multithreading improves the utilization of a single or multiple CPUs, 
whereby the program can continue performing those tasks that are not 
waiting for an event to happen. This improves the throughput and 
responsiveness of the program. 

A scheduler slices the main thread for each available CPU into multiple 
sub-threads (semi parallel). A thread is scheduled on a CPU and 
comprises a program context; i.e. the program counter, general registers, 
stack pointer, and the stack. At any one time only a single thread can be 
executed on a CPU. A multiprocessor system with n CPUs can therefore 
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execute n threads simultaneously (truly parallel). The entirety of a (sub-) 
thread is also known as a task. 

Synchronization is required between multiple threads upon a shared 
resource. Two important synchronization primitives are semaphores 
(Dijkstra, 1968a) and monitors (Brinch-Hansen, 1973; Hoare, 1974). Both 
synchronization primitives offer various kinds of mutual exclusion 
constructs (or critical regions), where each thread may enter the construct 
(or region) one at the time. Hoare (1974) described a fair monitor as a 
concept for operating systems based on Dijkstra’s semaphores. Derived 
monitor implementations are found in modern operating systems and in 
programming languages like Java (Arnold et al., 2000) and C# (Microsoft, 
2003). 

These synchronization constructs may depend on global conditions 
among different synchronization constructs. However, these 
synchronization constructs cause a few problems: 

• The synchronization primitives intertwine with objects, which 
complicate the implementation of the objects. While the 
software grows, its complexity may not linearly scale with the 
growth. Consequently, the understanding and the verification of 
its correctness will become error-prone and hard to grasp. 

• In case the synchronized resource is an object that mostly is 
accessed by a single thread, the synchronization construct 
decreases the overall performance. 

Operating systems offer higher-level constructs that encapsulate 
semaphore and monitor constructs. Examples of such higher-level 
constructs are signal-handling, mailboxes, input/output-streams, and 
barriers (joins). The higher-level constructs make concurrent software 
less error-prone and they are applied when multiple threads are certainly 
involved. We observe these higher-level constructs as ad-hoc solutions to 
individual problems without collaborating to coherent concepts and 
without a formal mathematical foundation. 

Hoare advocates reasoning about concurrency with processes and 
events, rather than with threads and monitors (Hoare, 1985). Monitors 



1.2 Scope of subject 9 

are too complicated to understand the behaviour of a complex 
concurrent program. Instead, Hoare developed CSP as a formal 
foundation for describing concurrent systems. CSP is also multithreaded 
but it surpasses threads, semaphores, and monitors by defining channels 
and other related fundamental primitives. CSP provides all the syntactic 
and semantic information for describing and understanding concurrency 
based on fundamental and compositional semantics. CSP is further 
discussed in Section 1.4.3. 

1.2.4 Occam and Transputer 

The transputer and occam technology provided a simple and elegant 
platform for building sophisticated, reliable and robust control systems. 
The parallel programming language occam (Inmos, 1988) is an 
implementation of a subset contained in CSP. Furthermore, occam is a 
highly secure programming language, which detects hazardous or 
errors-prone concurrency constructs at compile-time. Transputers are 
microprocessors that are designed to execute occam programs most 
efficiently. Transputers are equipped with four links. Transputers are 
building-blocks in homogeneous multiprocessor systems based on 
distributed memory. A link is a peer-to-peer connection between 
transputers that provides external channel communication between 
processes distributed on a network of transputers. 

The manufacturing of transputers ceased around 1996. Ivimey-Cook 
(1999) notes that the Inmos transputer was more than a family of 
processor chips, it was a concept, a new way of looking at system design 
problems. In many ways, that concept lives on in the hardware design 
houses of today, using macro cells and programmable logic. 
STMicroelectronics continues with the transputers core of the T414, in a 
low-cost chip called the ST-20, which is no longer referred to as a 
transputer. The ST-20 is nowadays sold as the STi5518 CPU which can be 
found in many TV set-top boxes and satellite receivers. Transputer links 
are found in other products. DEC’s Alpha processor 21364 uses 
transputer-class links for building multiprocessor configurations (DEC, 



 1. Introduction 10

2003). Transputer-class links are used for SpaceWire networks for the 
space industry (4Links, 2003; SpaceWire, 2003).  

Since transputers, as such, have become obsolete, the programming 
language occam evolves slowly and is still supported by a small 
community in the world. Translators exist for porting programs that are 
written in occam to processors other than transputers. Two translators 
are available: Kent Retargetable Occam Compiler KROC (KROC, 1999) 
and the Southampton Portable occam Compiler SPoC (SPoC, 1998). 
KROC translates transputer code that is produced by the occam compiler 
to native code for a target processor and SPoC translates transputer code 
to portable C code. Recently, the occam compiler source code has been 
released. An updated occam compiler supporting an updated occam 
programming language may be expected in the future. Despite these 
efforts, the future of occam is very uncertain. Occam suffers from not 
being a popular programming language due to the fact that the concepts 
behind occam are not well known by most software developers and 
perhaps the syntax is not favoured among programmers. The 
programming languages Ada (Barnes, 1988), Limbo (Stanley-Marbell, 
2003), and Handel-C (Page, 2001) have similar roots. Similar to the afore-
mentioned reasons, Ada and Limbo also suffer from lack of worldwide 
acceptance. However, Handel-C is C-alike and grows in popularity for 
programming field programmable gate arrays (FPGA). On the other 
hand, the look-a-like syntaxes of C (Kernigham and Ritchie, 1988), C++ 
(Stroustrup, 2000) and Java are preferred and widely accepted. One can 
imagine that the C, C++ and Java community could benefit from CSP by 
providing a CSP library for these programming languages. Furthermore, 
such a CSP library should be suitable for heterogenous multiprocessor 
systems based on shared or distributed memory 

1.2.5 THESIS 

A sound and intuitive foundation for the realization of control software 
and hardware was described by Wijbrans (1993). This resulted in the 
Twente Hierarchical Embedded Systems Implementation by Simulation 
(THESIS) method, which investigated the use of parallel processing and 
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structured design methods for embedded control system realization. This 
method was aimed at filling the gap between the derivation of the 
control algorithms and the controller realization by recommending a 
strategy that guides the engineer during the design process, provides a 
formalism for the description of the controller, and suggests support 
tools that aids the engineer during the design process. 

A control application is inherently data-flow oriented. Therefore, THESIS 
was naturally based on a channel-based methodology in order to 
guarantee consistencies and filling the gap between the different stages 
in the controller design and the final code. Wijbrans chose a software 
design tool based on the structured analysis and structured design 
(SA/SD) method of Hatley and Pirbhai (1987). The implementation and 
realization of the design is based on the parallel programming language 
occam and transputer hardware. Due to the CSP concepts that come with 
occam and transputers, this method resulted in reliable, robust, and well-
structured real-time control software for various mechatronic systems at 
the laboratory of Control Engineering. THESIS was applied to several 
industrial applications (Wijbrans, 1993). The technical abstraction that 
comes with occam and transputers reduced complexities in 
implementing controller software. This increased the development speed 
compared to imperative programming, which uses sequential 
programming languages, like C or C++, with multithreading primitives. 
This is an important lesson we learn from occam and transputers. 

The Hatley and Pirbhai method, occam, and transputers are considered 
outdated, taking into account the present trends in technology. These 
should be replaced by technology that keeps THESIS up-to-date. 
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1.3 Aim of research 
Considering the scope of subject, the aim of this research is formulated as 
follows: 

The aim of this research is developing a CSP-based methodology for 
building embedded real-time software for heterogeneous embedded control 
systems. 

This aim is multilateral because concurrency concerns all phases of 
software engineering. For each phase a sub-aim can be formulated: 

• In the specification phase this research aims at identifying and 
specifying concurrency as part of the requirements. 

• In the design phase this research aims at designing solutions to 
the problems, while maintaining concurrency and dealing with 
complexity reduction and absorption. 

• In the implementation phase this research aims at the development 
of an object-oriented concurrent framework that protects the 
engineer from needing exclusive skills on programming threads. 

• In the realization phase this research aims at porting the 
implementation to hardware so that the hardware is efficiently 
used and satisfies the required performance. 

• The concurrent software should be systematically tested to 
determine whether or not the software satisfies the required 
specification. 

The methodology should deal with common sources of complexities in 
programming concurrent software, such as multithreading, interrupt 
handling, exception handling, inter-processor communication, priority 
scheduling, reactivity, responsiveness, etc. These technical issues should 
be elevated to a high level of abstraction in order to simplify the design 
of the application and to simplify the required mindset of the engineer. 
The resulting concurrent software should be similar to that obtained by 
an experienced software engineer. A structured approach using sound 
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and proven concepts is required, which deals with these technical issues 
without introducing surprises, discontinuities, or non-scalable 
complexities. Such a structured approach should stretch over all phases 
of software engineering. The approach should provide an architectural 
view that binds all phases in the development process and can be 
implemented when completeness is achieved. The continuity and 
consistency between the different phases of software engineering should 
be guaranteed, which allows for rapid prototyping and round-trip 
engineering. The proposed methodology should provide the technical 
“how to’s” for building concurrent software. 

The proposed methodology is guided by the following goals: 

• to make things reasonably safe but not too restrictive, 

• to make compromises so as not to introduce unreasonable 
inefficiencies, 

• applicable for real-time and embedded applications, in 
particular for control applications, 

• and portable among different platforms. 

It is expected, due to experiences with occam, that the CSP concepts will 
result in tools that obtain control software at a fast pace in development 
and at a moderate cost. The programming languages C, C++, and Java 
are of interest for coding control software since these programming 
languages are used and supported by the vast majority of embedded 
software engineering companies. The proposed methodology will be 
applied to several embedded control systems. During this research 20-
sim (2003) is used for controller design and automatic code generation of 
the control laws. 
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1.4 Research approach 

1.4.1 Complexity 

The growth of software, in terms of size and the number of features it 
should perform, increases the complexity of software. The software 
engineer must deal with this complexity. Software design tools, 
modelling and programming languages, and software design methods 
are slowly evolving in order to simplify this task. However, the lack of 
common concepts that stretches over these tools, languages, and 
methods cause discontinuities between them. These discontinuities are 
hurdles in the software design trajectory. The solution to this problem is 
to eliminate discontinuities between the different models and phases in 
the software design trajectory. In order to understand what is required, 
we elaborate on complexity in this section. 

Complexity is a conception that is related to the human intuition. One 
person may find something complex to understand whereas someone 
else may find it simple to understand. In order to understand this 
phenomenon of complexity, complexity is defined as follows: 

Definition (complexity): Complexity is the amount of thought it takes a 
person to grasp a problem and/or to develop a solution to that problem. 

The amount of thought depends on many factors which are human 
related, i.e. previous knowledge and the ability of complexity reduction 
(simplification through abstraction, generalization, or mental images) 
and complexity absorption (speed and capacity of remembering, 
followed by reconstruction). Complexity is something that is cognitive or 
subjective and can be different for each individual person or common to 
a group of persons who share similar skills. Complexity can be measured 
by comparison between two or more alternatives. Quantities have been 
proposed to measure complexity and capture all our intuitive ideas about 
what is meant by complexity and by its opposite, simplicity. Complexity 
is often measured by time measures or information measures (Gell-
Mann, 1995). Time measures express how much time or steps it takes to 
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grasp the problem or to finish a computation. Information measures 
express the length of the shortest message conveying certain information. 
Complexity measures are context-dependent. 

In order to manage complexity, a common context-related language is 
required, which the human mind can easily grasp with assumed 
previous knowledge and understanding. The language should advocate 
complexity reduction and complexity absorption, which eventually 
results in reasonably low complexity measures. Time measures and 
information measures are reduced by concurrency. In other words, 
concurrency manages complexity! Therefore, the language should 
incorporate concurrency. Most tools, languages, and methods lack a 
good understanding of concurrency and not surprisingly they fail to 
describe a concurrent system with low complexity measures. The UML is 
a good example of a common language that suffers from discontinuities 
between different diagrams (or views), due to a poor concurrency model. 
Its concurrency concepts do not stretch over the multiple views and this 
makes concurrent software complex and error-prone rather than simpler 
and safe. Apparently, a wrong concurrency paradigm has been used in 
the UML. 

A mathematical foundation may contribute to a quality of understanding 
and reasoning about the behaviour of concurrent software. Often the 
results of mathematics can be summarized to formal and abstract 
concepts, implemented as practical constructs, guidelines, and rules. This 
is similar for CSP and its underlying theory. CSP comprehends a 
mathematical foundation, whereby simplification is achieved due to 
abstraction and a separation of well-defined concerns. 

1.4.2 Concurrency 

We live in a concurrent world where multiple tasks exist at the same 
time. These tasks are carried out in parallel, in sequence, or by some 
choice, and possibly communicate with each other. As in real life, clarity 
is obtained through concurrency. If one had to describe the behaviour of 
our environment as a strictly sequential model (or as one task) then this 
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would be too complex. Concurrent tasks exist at the same time, and they 
can be observed individually or in composition of other tasks. The 
existence of multiple tasks at the same time does not imply that these 
tasks are in parallel. Some tasks may be in parallel, some are waiting for 
another task to complete, or tasks are alternatively performed due to 
certain conditions. Parallelism implies that when a task has to wait for an 
event to happen, another task can continue. This most likely increases the 
overall throughput and responsiveness of an application. 

Although the high performance and the simplicity of a computer is 
attributed to concurrent hardware, concurrency in software is often 
thought to be an advanced topic that is much harder than serial 
computing. 

The term concurrent is often used as a synonym for parallel. These terms 
have something in common but their nature has different semantics. 
Essentially, concurrency comprehends more than just parallelism. For 
example, consider a simple system of two communicating computers in 
parallel. The parallelism is simply and solely not sufficient for 
understanding the behaviour of the system. More interesting still, is the 
understanding of the total behaviour of the system as an aggregation of 
sequential parts on each of the two computers, which are executed in 
parallel and that synchronize on communication. The elements 
sequential, parallel, synchronization, and communication are subject to 
concurrency in the system. Such a system is known as a concurrent system, 
where there is more than one process existing at a time, whose 
component processes interact with each other by communication. 
Concurrency accommodates common goals, whereas parallelism 
accommodates two or more independent goals with respect to 
performance requirements. The distinction between concurrency and 
parallelism helps a great deal in separating concerns in embedded 
system engineering. In this thesis, the term concurrent system is used 
when the parallel system is viewed as a whole and the term parallel 
system is used when the distribution of individual computers in the 
system is considered. 
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Concurrency is defined as follows: 

Definition (concurrency): Concurrency is an abstraction of behaviour, 
where the system is viewed as a set of parallel, sequential, and 
alternative processes that interact with each other by communication. 

In sequential programs, parallelism is replaced by sequential patterns of 
code which sequence is valid in parallel form. In a sequential language, 
communication is a combination of actions on shared variables or shared 
objects, whose actions are streamlined by a single sequential flow of 
control. In this sense, concurrency in sequential programs is done 
implicitly. Roscoe (1998) points out that this happens too implicitly in 
sequential programming languages. This becomes a major disadvantage 
when using a sequential programming language for creating concurrent 
(multithreaded) programs. Roscoe brings to mind that “this effect also 
shows up when it comes to mathematical reasoning about system behaviour: 
when it is not made explicit in a program’s semantics when it receives 
communications, one has to allow for the effects of any communication at any 
time.”. A paradigm that comes from true parallel systems (e.g. computer 
hardware, electronic components, etc.) benefits from concurrency and 
makes systems simpler. This illustrates that concurrency is too powerful 
and, indeed, too simple an idea to be set aside. With a better handle, it 
can simplify both the design and the implementation of most complex 
systems, as well as boost performance. 

Concurrency should provide: 

• a powerful tool for simplifying the description of systems; 

• natural separation of concerns at the highest level of abstraction 
in terms of processes and their interrelationships; 

• performance that spins out from the above, but is not the 
primary focus; 

• a model that is mathematically, clean springs no engineering 
surprises, and scales well with system complexity. 

The observable and fundamental entities of concurrent systems are 
events.  An event is an occurrence in time and space, which involves two 
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or more processes that engage in the event. One process cannot engage in 
an event on its own. During the event, particular indivisible actions are 
performed. These actions are strictly concurrency related, such as, data 
transfer, synchronization, and thread scheduling. An event represents 
the completion or successful termination of its actions, which only occurs 
when all associated processes rendezvous with each other. An event is 
not an object, it is not simply a method call on an object, and it is not an 
expression that becomes true. An event can only occur on rendezvous 
between two or more processes. The term process will be explained in 
Section 2.3.1. 

In this thesis, we distinguish between communication events, 
termination events, timeout events, and exception events. A 
communication event is the occurrence of two processes engaged in 
communication over a channel or barrier. A termination event is the 
transition from one process to a subsequent process. A timeout event is a 
rejection of communication when it is not ready before a specified time. 
An exception event is an internal event of a process that stops the process 
from making progress. Communication events and termination events 
are the primary events from which timeout events and exception events 
are derived. 

1.4.3 Communicating Sequential Processes 

CSP is a theory of programming and a notation for describing concurrent 
systems whose component processes interact with each other by 
communication (Hoare, 1985; Roscoe, 1998). Its concepts are based on 
mathematics and compositional semantics. In CSP, one can specify 
requirements precisely and prove that they are satisfied by our 
implementations. CSP is about 10 years newer than object-orientation 
and 5 years newer than monitors. The theory has evolved over time and 
its concepts are timeless (Hoare, 1978; Hoare, 1985; Roscoe, 1998; 
Schneider, 2000). 

CSP deals with processes, networks of processes and various forms of 
synchronization and communication between them. A network of 
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processes is also a process and so CSP naturally accommodates layered 
(or nested) structures, i.e. networks of networks. A CSP process isolates 
data and operations from other processes. Its behaviour is completely 
described by the way it communicates with its external environment via 
channels. A channel performs a barrier synchronization between two 
processes. A barrier is a rendezvous point on which two or more 
associated processes are blocked until all processes reach the rendezvous 
point. A barrier can be represented by a single channel between two 
processes, by a bundle of channels between two or more processes, or by 
a parallel construct that terminates when all participating processes have 
terminated. Channel and barrier communication are observable as 
communication events.  

Processes are components that are complete and have no complex 
dependencies on other components. The definition of a process 
comprises syntactic and semantic information on how the process 
interacts with its environment. This information is entirely specified 
through a defined interface—its abstraction—consisting of various 
synchronization primitives as defined in CSP. The synchronization 
primitives encapsulate the principles of multithreading and brings about 
channels, barriers, and binary operators. These binary operators are 
represented as compositional constructs. 

CSP is founded on what is called compositional semantics. CSP offers three 
distinct ways of describing the meaning of a program, namely 
operational, denotational, and algebraic semantics. The operational 
semantics interprets programs as state diagrams. The denotational 
semantics maps a language into an abstract model in such a way that the 
value (in the model) of any component is determinable directly from the 
values of its immediate sub-components. These values are based on 
traces, failures, and divergences (Roscoe, 1998). Algebraic semantics are 
defined by a set of algebraic laws. Each semantic complements each 
other. The mathematics are left to the CSP books (Roscoe, 1998; 
Schneider, 2000) and model checking tools (FDR, 2004; ProBE, 2003), but 
its assets should be brought to practical use for the user to describe the 
compositional semantics of the software suitable for formal analysis. 
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1.4.4 Strategy 

A concept is an abstract principle with a well-defined semantics. A 
concept is less sensitive to changes than its implementation. After all, 
good concepts live longer than their implementations. Concepts are the 
building-blocks of a methodology. Therefore, the quest of this research is 
to develop an implementation using modern technology that replaces 
occam and transputers while maintaining the invaluable CSP concepts. 
The implementation of the CSP concepts is the foundation for the 
proposed methodology. 

The aim of this thesis is accomplished by realizing the following goals: 

1. A CSP-based graphical modelling language should be defined for 
specifying and designing control architectures using graphical 
notations. 

2. A object model should be developed that implements the CSP 
concepts using object-oriented techniques. The object model 
should be abstract, but eventually the model must be 
implemented in the programming languages C, C++, and Java. 
This should result in three CSP libraries for C, C++ and Java. 
Currently, the Java run-time environment takes significant run-
time overhead, making it unsuitable for embedded real-time 
systems. Therefore, the CSP libraries for C and C++ are meant to 
boost performance on embedded systems. 

3. Demonstrate the proposed methodology on several control 
systems at the laboratory of Control Engineering. 

The object model is prototyped in Java and partly documented using 
UML diagrams. Java was used for the following reasons: 

• Java is popular and world-widely supported, 

• Java is better than C++ (i.e. simpler, safer, C look-a-like), 

• Java was meant for embedded systems, 

• Java is object-oriented and multithreading is supported within 
the language and the Java run-time system. 
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The prototype in Java was meant for educational purposes and from 
which C and C++ versions should be derived. A version in C and C++ is 
required in order to boost performance. UML diagrams are used to 
document the object model. 

Valuable aspects of component-, process-, and object-oriented 
technologies should be incorporated in the object model. A relationship 
with other methodologies, being suitable for creating control software, 
should be maintained. Methodologies of interest are UML (1998), ROOM 
(aka RT-UML) (Selic et al., 1994), Octopus (UML version) (Awad et al., 
2002), Ptolemy II (Ptolemy, 2003), and structured methods (Hatley and 
Pribhai, 1987; Yourdon, 1989), and THESIS (Wijbrans, 1993). 

1.5 Overview of thesis 
The realization of the postulated aims is described in the following 
chapters: 

Chapter 2 

A structured approach to embedded control systems implementation is 
discussed. This chapter emphasizes the importance of processes and 
events during the development of control models and control software. 

Chapter 3 

A graphical modelling language for specifying and designing process 
architectures is described. The graphical notations are derived from CSP 
which allow the user to convert data-flow oriented control models into 
executable models, called CSP diagrams. 
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Chapter 4 

A CSP library for Java is described. This library renders the application 
programming interface (API) of the object model in Java. Also, the library 
stands model for implementations in other object-oriented programming 
languages. CSP diagrams can be straightforwardly implemented with 
this CSP library to Java. The implementation of the API is not described 
in this chapter. 

Chapter 5 

Real-time behaviour is important and usually priorities are the solution 
to allow real-time processes to meet their deadlines. A notion of priorities 
for CSP-based software is described. Priorities are supported by CSP 
diagrams (discussed in Chapter 3) and are implemented in the CSP 
libraries for Java and C++ (discussed in Chapter 4 and 6). 

Chapter 6 

The CSP diagrams and the CSP library for C++ have been applied to 
several embedded control systems. Several applications illustrate how 
CSP diagrams and the CSP library for C++ contribute to the development 
of reliable and robust control software. 

Chapter 7 

The results of this research are reviewed. Conclusions and 
recommendations are subject of this chapter. 
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A Structured Approach to Embedded 
Control Systems Implementation 

2 A Structured Approach to Embedded Control Systems Implementation 

2.1 Introduction 
Control systems are concurrent systems, which involve processes 
deployed in hardware and in software. These processes perform tasks at 
periodic intervals (e.g. sampling, actuation, and data processing) or at 
sporadic stimuli from the environment (e.g. mode-switching, safe-
guarding). These processes must guarantee real-time constraints; e.g. 
reactivity, responsiveness, and deadlines. The control software integrates 
concurrency related concerns, such as multithreading, interrupt 
handling, exception handling, timing, and scheduling. These concerns 
propagate through the design and implementation of control 
applications for which an appropriate understanding of concurrency is 
crucial to their development. 

The above mentioned concurrency related concerns can complicate the 
implementation of the execution framework when these concerns are 
treated as ad-hoc solutions. The transformation of the controller design to 
its implementation is usually automated, which hides the complicated 
code framework from the user. Consequently, the user has control over 
the objects in the design, but the user has restricted control over the 
execution framework and its performance. This automation is not a 
problem unless its restrictions become a burden. This can cause a serious 
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gap between a controller design and its implementation on dedicated 
target platforms. A structures approach is required that is based on 
sound and formal concepts that enable the integration of concurrency 
related concerns without surprises. 

The user is primarily focussed on processes during the design of a 
control system, and secondarily on objects. A control system is a process 
of one or more control loops. Each control loop is a process that is 
performed partly in software and partly in hardware. The control 
engineer is concerned with a hierarchy of processes during specification, 
design, implementation, and verification by simulation of control system. 
It are those processes that describe the behaviour of the system. Processes 
and objects go hand in hand, whereby objects implement processes. 
Therefore, a control system is not solely described in terms of objects, as 
some object-oriented engineering approaches do suggest. The THESIS 
method (Wijbrans, 1993) showed that process-orientation offers a 
structured approach to control system design and implementation. 
Although THESIS is more than 10 years old, most of its propositions are 
still applicable to the methodology presented here. 

This chapter emphasizes the importance of process identification, process 
architecture design, and process analysis for the development of control 
systems. This process-orientation constitutes to a structured approach, 
which involves the different disciplines in control system development. 
The process architecture design elevates the previously mentioned 
concurrency related concerns to a higher-level of abstraction that is in 
control of the user. The structured approach, presented here, follows the 
chain of thoughts behind the THESIS method. 

The conceptual design of control software for mechatronic systems is 
discussed in Section 2.2. Several disciplines in the control system design 
trajectory are distinguished. The emphasis is on identifying processes 
that are subject to refinement. In Section 2.3, the importance of processes 
and process architectures in the development of control software are 
discussed. The THESIS method is briefly described in Section 2.4. 
Conclusions to this chapter are described in Section 2.5. 
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2.2 Conceptual design for controller 
software of mechatronic systems 

2.2.1 Multidisciplinary design approach 

In a mechatronic systems’ approach, the dynamic properties of the total 
system play a central role. The controller being designed is in general a 
dynamic process, which is connected to dynamic processes that model 
the physical system to be controlled. These processes are the building-
blocks that manifest a process architecture that describes the entire 
behaviour of the system. Therefore, a process architecture encompasses a 
multidisciplinary design approach and may involve a team of people. 
Specific design methods and design tools are required for processes in 
specific domains, which are tailored to the type of system for which they 
are intended. 

A typical process architecture of a control application starts with three 
kinds of processes; controller processes, physical processes, and 
supplemental processes. Figure 2-1 illustrates a process architecture of 
processes (rectangles) and their communicational relationships (arrows). 

 

Figure 2-1 Context diagram (part 1 of 2) of a control system 
showing communication relationships between the 
controller, physical, and supplemental processes. 

The controller processes are comprised of a variety of separate controllers. 
The physical processes separate behaviours of a real plant to be controlled. 
The supplemental processes are responsible for other things, such as, 
maintenance, data analysis, diagnostics, repository, or user monitoring 
and commands. Note that a control loop is described by a control process, 
which involves a controller process and one or more physical processes. 
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Figure 2-2 illustrates another view of the process architecture, with the 
same processes, but with compositional relationships (connections). This 
figure specifies that all three kinds of processes run in parallel and, 
together with Figure 2-1, it specifies that these processes must 
synchronize on communication. 

 

Figure 2-2 Context diagram (part 2 of 2) of a control system 
showing parallel relationships between the controller, 
physical, and supplemental processes. 

Both Figure 2-1 and Figure 2-2 show a top-level design, also called a 
context diagram, representing the fundamental processes to be designed 
within a particular context of the system. The graphical notation used, 
along with their semantics, is explained in Chapter 3. This context 
diagram portrays a CSP diagram, providing uniform connections between 
the concurrent processes. Also, these connections depict the relationships 
between the different disciplines. The context diagram is a joint point of 
departure for the different design disciplines. It is possible that, for every 
control loop, a separate context diagram can be designed and combined 
together. 

A process architecture acts as an intermediate in a multidisciplinary 
design approach, which 

• captures concurrency in the system, 

• endures the stages in the design process, 

• supports stepwise refinements. 

Concurrency is an inherent part of control systems and establishes a clear 
separation of concerns within the stages of control system design, 
process architecture design, and the underlying stepwise refinement. The 

Controller  
Process 

Physical 
Process 

Supplemental  
Process 

     



2.2 Conceptual design for controller software of mechatronic systems 

 

27 

stages of control system design are discussed in Section 2.2.2. Stepwise 
refinement is addressed in Section 2.2.3. 

2.2.2 Control system design trajectory 

The control system design trajectory is partitioned in the following four 
stages (Broenink and Hilderink, 2001): 

• Physical-System Modelling—The dynamic behaviour of the 
system is object–orientedly modelled, using a port-based 
approach (e.g. bond graphs) as a main modelling paradigm. 

• Control law Design—Using the model acquired in the previous 
step or a simplified version of it, control laws are designed. 

• Embedded Control System Implementation—Transforming the 
control laws into efficient concurrent algorithms (i.e. computer 
code) is guided via a stepwise refinement process. 

• Realization—The realization of the control system is a sequence 
of refinements that deals with the limitations, technical issues, 
and the behaviour of an embedded computer system. 

An overview of these stages is depicted in Figure 2-3. 

 

Figure 2-3 Control system design stages. 

After each step, the results are verified by simulation, or validated by 
experiments, on the real embedded computer system. Verification 
determines if “the product was built right” and validation determines if 
“the right product was built”. Verification is a process of testing, 
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inspecting, comparing, and analyzing, which determines whether or not 
the product or model of a given stage, fully implements the specified 
requirements of that stage. Validation is a verification process, which 
comprehends the evaluation of any misfits between the system 
requirements and the system, in the real-world. Validation demonstrates 
the usefulness of the product, i.e., the embedded system. Validation 
usually takes place at the end of a development trajectory of a prototype 
or the final product and looks at the complete system as opposed to 
verification. Complete validation requires the validation of the 
requirements, in order to determine whether or not the right product was 
built; validation of the validation. Verification and validation are 
essential processes in stepwise refinement. A positive result of 
verification or validation is a permit to go to the next stage in the 
development process; otherwise further refinement is required. 

The previously mentioned stages will be detailed in the following sub-
sections. It may then become clear that the notion of processes is essential 
to each of these stages. 

Physical-system modelling 

The physical system, which is to be controlled, is preferably modelled in 
a process-oriented way; since a physical system exists of ‘real-world’ 
processes, in which ‘real-world’ objects participate. The purpose of 
physical-system modelling is to create a competent model of the system 
under study. A competent model is a sufficiently detailed or qualified 
model of the physical system that captures the relevant dynamic 
behaviour of that system. It can serve as a kind of physical system 
replacement. 

Competent models are created for at least three goals, namely: 

1. understanding the dynamics of the physical system, 

2. structuring the functional and non-functional requirements, 

3. deriving control laws. 
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Hierarchically structuring models is necessary since models are of non–
trivial complexity. This also implies that the encapsulation of model 
details should be provided at an appropriate degree, so that extensibility, 
maintainability, and reusability can be achieved. Commonly, port-based 
elements and block diagram elements with parameters that are directly 
related to the physical properties of the system are combined to form one 
model, which serves all three goals. In this, a model is composed of sub-
models. Each sub-model manifests a separate concern and is 
encapsulated by well-defined interfaces. The connections between these 
interfaces are signals or ports that exchange energy (bilateral or power 
conjugate pairs of variables). The sub-model formulae are written in a 
declarative style, i.e. as equations in the mathematical sense and not as 
assignment statements. For an introduction in physical modelling, refer 
to van Amerongen and Breedveld (2003). 

Control law design 

The control laws are subject to implementation in software. Often, a 
simplified and linearized version of the physical-system models is used 
for deriving control laws. The interdependencies between the physical 
system design and the control law design make the modelling process 
iterative. This puts an extra demand on model extendibility and 
maintenance. 

The following, rather common, procedure of control law design is 
phrased: 

• Generate competent model(s)  
A competent model represents the physical system to be 
controlled. The competent model (either reduced automatically 
by linearization and/or order reduction, or diminished by hand) 
serves as a substitute for the physical system when the control 
laws are designed. It may be necessary to have more than one 
simplified model to cover the whole workspace of the control 
system. 

• Verify competent model(s)  
A competent model is simulated to check whether or not the 
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model satisfies its goals. The model should be verified (i.e. its 
simplification should sufficiently reflect the dynamics of the 
system) and validated (i.e. compared with measurements on the 
real system). 

• Derive the control law(s)   
Using standard procedures, a control law is now designed using 
the model(s) acquired in the previous stage. It is also possible to 
derive a set of control laws, each having its own operating 
domain (state invariants). This can make each individual control 
law simpler or give it a better performance. Additionally, 
switching from one control law to the other must be designed. It 
may be required that switching behaves smoothly from one 
control law to the other: i.e. bumples transfer (Hilhorst et al., 
1994; van Breemen, 2001). 

• Verify the control law(s)  
Construct a test bed in which the control law is connected to the 
model. Verify the control laws by performing simulations. Run 
experiments in such a way that the demands on the controller 
performance can be checked. Arriving at this stage, the control 
laws, together with the model, can be used in the process of 
embedded system implementation. 

This procedure results in a process architecture as discussed in Section 
2.2.1. The controller processes can be comprised of loop control-, 
sequence control-, or supervisory control processes (Wijbrans, 1993). Loop 
control performs digital control algorithms. Sequence control guides 
sequences of operations, based on logical actions in time. Supervisory 
control contains optimization algorithms (e.g. adaptive or self-learning) or 
expert systems (e.g. knowledge-based) that generate (optimal) input 
signals for the control loops or adapt parameters of the control 
algorithms. The physical processes describe the behaviours of the 
mechatronic system or the plant to be controlled. The supplemental 
processes may provide user interaction, which can have influence on the 
behaviour (or mode of operation) of the control process. 

In this thesis, the design and simulation tool 20-sim is used for designing 
and simulating physical-system models and for deriving control laws. 
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Embedded system implementation 

The entire process architecture is subject to implementation in software, 
hardware, or in both. Physical processes are already part of the 
hardware, e.g. the mechanics. Supplemental processes may also exist in 
hardware or in software. The controller processes are subject to 
implementation in software. Broenink and Hilderink (2001) proposed a 
procedure to structure the implementation process for the controller part. 
The procedure is divided into four concerns: 

• Integrate control laws  
The controller processes are the central and embedded part of 
the entire system. After the control laws have been designed and 
verified by simulation, they need to be implemented on the 
embedded control computer. Control laws for different 
situations are combined with sequence or supervisory control 
processes. The computation of the algorithms is influenced by 
the resolution and truncation of values or mathematical 
functions. The errors caused by numerical integration methods 
are also taken into account. The sensors and actuators are 
assumed to be ideal. The traces of events are also considered 
ideal; i.e. no event will be refused. 

• Capture technology–independent functionality  
Facilities for safety, maintenance processing, data repository, 
and user-interaction functionality are added. These 
supplemental processes should be independent of the behaviour 
of the control processes. Note that supplemental processes 
consume processor time, so these processes may have influence 
on the overall performance of the system. Furthermore, the 
execution framework of the control software should be 
independent of the underlying operating system. 

• Capture technology–dependent functionality  
The specification is augmented with the non–idealness of sensors, 
actuators, and events. The operation of sensing and actuating is 
no longer considered ideal or faultless. Characteristics of the 
input and output devices are added to the description, e.g. 
delays, quantization, and discretisation on analogue-to-digital 
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and digital-to-analogue conversions. The algorithms are no 
longer faultless and should be protected by integrity constraints 
to prevent or to handle illegal states. Hardware is drift-sensitive 
in terms of aging, temperature, and wear-out. Furthermore, the 
environment in which unforeseen errors can occur is not ideal, 
especially when the non-idealness of events means that events 
may not occur due to defects in the system. Escape routines are 
required to take appropriate actions, such as error-recovery or 
graceful termination. 

• Capture timing characteristics  
Timing is completely event related. The events on which the 
control laws are performed are periodic or sporadic and the 
computation is associated with completion-time. Therefore, 
controller processes are usually hard real-time processes whose 
outputs must be computed before the next sampling interval; i.e. 
missing any deadlines will result in an error. Scheduling 
techniques and/or algorithm optimization techniques may be 
used to obtain a viable performance. The notion of priority is a 
solution to deal with the limited processor time in order to 
guarantee that processes will meet their deadlines. Priorities and 
buffering techniques decouple critical processes from (non-real-
time) support processes. This also deals with communication 
latencies between processes. 

In each of these concerns, a good understanding of concurrency is 
required. A change in the process architecture means a change in the 
implementation and visa versa. A one-to-one mapping between the 
process architecture and its implementation, while maintaining the 
semantics of concurrency, makes the development trajectory predictable. 

Realization 

After the process architecture and the control algorithms have been 
coded by the previous implementation phase, one can work towards 
realization on the target computer and physical device. 
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A stepwise approach is advocated, whereby a real embedded system is 
divided into four main parts: 

• Embedded computing—This manifests the embedded computer 
system which consists of all computing functionality that 
performs the control algorithms. 

• I/O interfacing—Input-output (I/O) interface boards connect the 
plant to the computer system. Specific operating system 
resources, namely device drivers, are required for the program to 
address these I/O interface boards. In case interface boards are 
equipped with one or more processors, the control algorithms 
may be distributed over the interface boards. 

• User interfacing—The user interface connects the computer to the 
human world. It may be required to monitor internal values 
(signals and parameters) of the controllers or to command the 
controller. This feature is often used for validating the systems 
behaviour, maintenance, collecting data, or for external mode-
switching by the operator. 

• The plant—The plant is the mechatronic system with actuators 
and sensors connected to the embedded control system. 

The process architecture, starting from a context diagram as shown in 
Figure 2-1, takes these four parts into account during the design of the 
control system. The controller processes are mapped on the embedded 
computing part. The supplemental processes provide the user 
interfacing. The communication relationships implement the I/O 
interfacing. The physical processes are part of the plant. 

The implementation on the real embedded system proceeds with 
precaution and safety, so that the variables do not get out of bound, or 
the system cannot hurt anyone or damage itself. Similarly, some parts of 
the plant that are not yet available can be simulated. 

Before the final realization, a method of testing the implementation of 
embedded control systems can be carried out using a hardware-in-the-loop 
simulator. Hardware-in-the-loop simulation (HIL simulation or HILS) is 
characterized by the operation of real components in connection with 
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real-time simulated components (Isermann et al., 1999). The input and 
output of the real-time simulated processes show the same time-
dependent values as the real physical processes (Isermann et al., 1999; 
Sanvido and Cechticky, 2002). The idea of HILS is to replace the real 
physical process with a simulated physical process. The embedded 
control system communicates with the simulated physical process, as if it 
were communicating with the real physical process. The simulated 
physical process performs the dynamic model, which represents a part of 
the real plant. The mathematical model can be altered to induce faults, 
which the controller process on the embedded control system must 
anticipate. Any incorrect behaviour of the controller process cannot cause 
damage and this improves the understanding of the behaviour under 
different working loads and conditions. In Isermann (1999), two 
additional variants of HILS were mentioned, which are 

• simulated controller processes and real physical processes 
(called control prototyping),  

• simulated controller processes and simulated physical 
processes.  

These approaches may be required if the computer hardware and/or the 
plant is not available, or the examination on behaviour before HILS is 
considered. 

HILS is a verification process that tests the completeness of the controller 
processes and eventually ensures that the system is correct, even in 
dangerous situations. The following two steps are missing in the 
verification process which should be taken into account. 

1. The physical-system model should be validated to ensure that the 
model does represent the real system, even in critical situations. 

2. The HIL simulation should be validated to ensure that the right 
conditions are tested and no conditions are forgotten. 

A diagnostic process can probe the responses from the controller 
processes and the physical processes. The diagnostic process aims at 
detecting correct/incorrect responses from the embedded control system. 
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Fault generation and diagnostics can be automated by tools and the use 
of a fault specification language (Sanvido and Cechticky, 2002). The 
diagnostics of the embedded control system is orthogonal and should not 
alter the design of the controller processes or the (simulated) physical 
processes. 

 

Figure 2-4 Context diagram refined with a diagnostic process 
(communication view). 

In Figure 2-4, a refinement of the context diagram in Figure 2-1 is shown 
that is suitable for HIL simulation. The graphical notation is explained in 
Chapter 3. Here, a diagnostic process observes the communication 
between a controller process and a (simulated) physical process. If the 
diagnostic process detects a fault, it can ask the controller process to 
correct the error or ask it to stop. In order to complete the process 
architecture, a compositional diagram must specify that these processes 
are performed in parallel, as in Figure 2-2. This is explained in Chapter 3. 

In the proposed methodology, any process in the process architecture can 
be replaced by a real process or a simulated process. The hardware 
interface of the embedded control system is between the controller 
processes and the real or simulated physical and supplemental processes. 
The arrows are channels that synchronize the processes on 
communication and these channels encapsulate the hardware interfaces 
from the processes. In the context diagram, channels are responsible for 
sampling and actuation. The channel model abstracts away from the real 
or simulated devices and are observed as (periodical or sporadic) 
communication events at this stage of design. This channel model 
simplifies the development of the process architecture. The channel 
model is based on the CSP channel communication model and therefore 
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the semantics of the process architecture are uniform. The controller 
processes automatically block on these channels for the next sampling 
interval. Once these channels become ready (e.g. after the device has 
performed the sampling or actuation on a timed interrupt), the processes 
continue and will be blocked until these channels become ready on the 
next interval. These timed channels perform sampling and actuation at 
precise intervals (jitter-free), whereas the wakeup of processes does not 
have to be precise. Processes must make sure that their outputs are 
available before their deadline, i.e. before the next interval. A CSP 
diagram enables the user to understand the concurrent behaviour under 
timing constraints, early in the control system design trajectory. 

2.2.3 Stepwise refinement 

Stepwise refinement is all about improving specifications. Refinement is 
the process of adding information, whereby the requirements, design, 
and implementation become more precise. This usually results in 
deterministic structures of information, shaped in executable or 
simulateable models. Intermediate or final models must be verified for 
correctness and consistency between refinements or development stages, 
before carrying on. The growth of information should be managed by 
appropriate hierarchical structures (abstraction) and proper separation of 
concerns. 

The process of improvement involves the removal of uncertainties or 
non-determinism by functional decomposition. Sequencing activities is 
often applied to remove non-determinism. Sequential constructs, which 
service non-deterministic (e.g. simultaneous or alternative) inputs and 
outputs, are usually complex. Instead, abstraction should capture non-
determinism, which should maintain in the trajectory of refinement. 

At the implementation phase, the right choices must be made to deal 
with non-deterministic behaviours using appropriate deterministic 
constructs. Such deterministic constructs are defined by CSP and are 
discussed in Chapter 3 and 4. CSP comprises simple and busy-polling-
free constructs that boost the reactiveness and responsiveness of the 



2.2 Conceptual design for controller software of mechatronic systems 

 

37 

program. The CSP paradigm helps a great deal in detecting and solving 
pitfalls in the process of refinement. The solutions are orthogonal to the 
design of the process architecture and can be applied in a later stage of 
the design trajectory. For example, 

• Parallel activities can be systematically sequenced for boosting 
performance in circumstances where context-switching does not 
contribute to better performance. 

• Event handling can be prioritized so that urgent events are 
handled first. 

The real world is concurrent and not entirely described in terms of 
deterministic structures and behaviours. For example, the occurrences of 
sporadic or simultaneous events are non-deterministic in relation to time. 
Non-determinism is a natural phenomenon in which behaviour can be a 
requirement on its own. For example, buttons on a system can be pressed 
by a user in any order or simultaneously, which should not cause an 
error in the program. This is similar to a control system that has to 
handle multiple control loops at multiple frequencies. With the right 
abstraction, like using the CSP paradigm, concurrent behaviours can be 
described and maintained in the process of stepwise refinement. In other 
words, identifying deterministic and non-deterministic behaviours in a 
system is fundamental to stepwise refinement. Stepwise refinement 
should start with process-orientation, which provides the fundamentals 
for capturing the desired behaviours of the system. At the design stage, 
one should tend to stick to a more abstract, if necessarily non-
deterministic, definition of processes. The deadlock and livelock issues 
will usually be addressed at this point. In this way, one can build robust 
programs for which deadlock-freedom cannot be compromised by 
implementation decisions at a later stage (Martin and Jassim, 1997). 

Furthermore, the process model and channel model in CSP allow for 
prototyping on the basis of partial products. Consequently, stepwise 
refinement is a predictable process without engineering surprises. Each 
step in the refinement undergoes process analysis where something 
complex is studied and examined by separating it into more simple 
processes, as opposed to synthesis. 
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2.3 Processes are in control 

2.3.1 Processes 

The term ‘process’ is frequently used throughout this thesis. Several 
different kind of processes are mentioned, such as controller process, 
physical process, supplemental process, software process, hardware 
process, compositional process, and more. These are processes in 
different contexts with different objectives to achieve and different 
implementations. However, they share the term ‘process’, which means 
that they must have something in common. 

In each different semantic of the word ‘process’, as can be found in 
Webster’s dictionary, a common property is that a process describes 
some progress whereby something is to be done with a certain goal to achieve. 
Another property of a process is that it may or may not react on certain 
events. The behaviour of a process describes the evolution of a system in 
time and, in particular, how it interacts with its sub-systems and the 
environment. Furthermore, a process is described by simpler processes. 

A generalized definition of the term ‘process’ is as follows: 

Definition (process): A process is an independent self-contained entity 
that performs one or more task, within its private workspace, to achieve 
a joint goal, and during its progress it may or may not interact (engage in 
events) with its environment by means of communication. 

This definition applies to the variety of processes, as mentioned in this 
thesis, for which they can be viewed at the same level of abstraction. The 
objective and behaviour of a process becomes clear when viewed in a 
concurrent system where processes are viewed in relation to other 
processes. See Section 1.4.2. Once a process is created it exists. The 
relationships between processes determine when a process starts or 
when it has to wait for an event to happen. Once a process has been 
started, it is in progress (even when it waits for events) until it 
terminates. A precise semantics of processes and their interrelationships 
are elaborated on in Chapter 3. 



2.3 Processes are in control 

 

39 

2.3.2 Identification of processes 

In the context of software engineering, process identification is a term for 
identifying tasks, being relevant to the system, with joint goals, and 
operating in the same domain. This results in well-defined boundaries 
that encapsulate the workspaces of the joint tasks. Each boundary 
specifies a process. Each process has a unique identity. The identities 
must prevail in all stages of the development trajectory; i.e. from 
specification to its realization. Process identification is a hierarchical and 
decompositional process, for which processes are described by simpler 
processes. This results in a process architecture, which encompasses all 
relevant functional aspects of the system at different levels of detail. A 
process architecture is multidisciplinary. Typical domains in embedded 
systems are software, computer hardware, mechanics, analogue electrical 
elements, and FPGA’s. 

The identification of processes starts with extracting canonical tasks that 
are most obvious to be performed by the system. A task is a collaboration 
of activities which aims to achieve a common goal within a (yet) 
undefined boundary. A task is underpinned by a task description in the 
solution domain of the application that is under construction. Those tasks 
that are identified as building-blocks become processes in the process 
architecture. The identification of processes is a stepwise refinement 
trajectory until all the decisions and responsibilities that are taken by the 
application are captured. The identities of processes are distinguished by 
their existence and not by their descriptive properties. Process 
identification is intuitive and it comes in various flavours, such as agents, 
actors, capsules, active objects, etc. In this thesis we will abstract away 
from these flavours. Instead, we will use the term ‘process’ as defined in 
Section 2.3.1. 

A task that fulfils one of the following observable patterns can be 
identified as a process. 

• the activities of a task operate on the same private data structure, 

• a task that reacts on events (event-handling), 

• a task has a particular deadline before completion, 
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• a task has a different priority than another task, 

• a task can be performed in any order with respect to another task, 

• a task communicates with a task in a different domain, 

• a task plays a unique role, 

• or a task is mobile or autonomous. 

Identifying processes can be performed in a systematic way by means of 
task-based reasoning, communication-based reasoning, and 
compositional-based reasoning. The latter two approaches identify the 
interrelationships between tasks, which eventually results in process 
identification. 

• Task-based reasoning concerns the operational and logical 
activities in the software system. This approach is an inside-to-
outside view of tasks, with the initial focus on the inside of a 
task towards its boundary. Tasks with well-defined boundaries 
are likely to be identified as processes. The boundary of a 
process marks the goal and responsibilities of the inside tasks, 
separated from other processes. 

• Communication-based reasoning concerns the message-flow 
between independent tasks. This message-flow oriented 
approach is an outside-to-inside view of tasks. The message-
flow influences the behaviour of tasks without changing their 
goal and responsibilities. This identifies two separate processes, 
one at the sending-end and one at the receiving-end of the 
message-flow. The objects that are required to establish the 
message-flow are identified as channels or barriers. Identifying 
channels or barriers will identify the boundaries of tasks and 
thus this will eventually identify processes at each end of the 
communication interrelationship (message-flow). Channels and 
barriers are explained in Chapter 3. 

• Compositional-based reasoning concerns the control-flow between 
independent tasks. The control-flow can be composed by 
sequential control-flows, parallel control-flows, and choices 
between multiple control-flows. Tasks that spawn from other 
tasks (forking), tasks that join to a single task, or decisions made 
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by the tasks to perform sub-tasks, are symptoms of process 
identification, based on their compositional relationships. Every 
exception handling construct identifies two processes, namely 
the task that can be in exception and the exception handling 
task. 

Process identification and process analysis are essential and an ongoing 
discipline in the stepwise refinement of control system design. This is 
essential not only for managing complexities but also to be able to 
understand its implementation and realization. 

2.3.3 Process Analysis 

Process analysis is a study or examination of the behaviour of an entire 
process and is divided into sub-processes. It investigates these sub-
processes and their interrelationships to create a picture of its behaviour 
as a whole. In other words, process analysis partitions the system 
behaviour into deployable and concurrent processes. This can be based 
on particular approaches where processes are given the role of agents, 
actors, capsules, or active objects. 

Process analysis manifests in: 

• Requirement analysis is the process of extracting the desired 
requirements and structuring them into a comprehensive form. 
The requirement analysis is, in its very essence, a functional 
description of the system and relies heavily on task 
decomposition. The structural units of this decomposition are 
behaviours, functions, and tasks. These structural elements are 
arranged into system models. The system model along with the 
requirements model forms the system specification. System 
models should meet the functional and non-functional 
requirements at the same time (Douglass, 1999). Stepwise 
refinement should obey the functional and non-functional 
requirements of the system. Functional requirements are the 
expectations of system behaviour as viewed from outside the 
system. These requirements outline the transformation 
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behaviour from input to the output of the system. Non-functional 
requirements, also known as quality of service (QoS) requirements, 
specify the necessary performance, reliability, robustness, 
accessibility, usability, and safety of the functional requirements. 
Non-functional requirements concern the environment in which 
a system evolves. Non-functional requirements manifest 
important design and implementation decisions. 

• System analysis partitions the system models and requirements 
into mechanical, electronic, and control components using 
structural elements. In control system design, structured 
elements are ideal physical model (IPM) elements, bond graph 
elements, and block diagram elements. The system requirements 
specify the constraints within these domains.  

• Object analysis identifies the structural units of object 
decompositions (classes and objects), identifies the 
organizational elements (packages and components), and the 
relations among these elements. Objects allocate the functional 
structure of methods and data that implement the processes. 

These analysis processes can be carried out in any interleaving order and 
do not manifest a waterfall approach. Process analysis has a global 
character applied to all stages in the development trajectory and 
therefore prohibits discontinuities between the stages. Hence, the 
absence of discontinuities determines the quality of analysis. 

2.3.4 Process Architecture Design 

The processes and their interrelationships that must be performed by the 
system are the building-blocks that manifest a process architecture. A 
process architecture describes the entire behaviour of a concurrent 
system. A process architecture is a structured computational model that 
is executable or simulatable. 

A good architecture comprehends the essential and behavioural 
framework on which all other aspects of the system depend. Its structure 
connects the identified processes in the system, regardless if these 



2.3 Processes are in control 

 

43 

processes reside in software or in hardware. Furthermore, a good 
architecture simplifies the construction of the initial system and readily 
accommodates changes forced by a steady stream of new requirements. 

A process architecture abstracts away from objects. Objects structure data 
and code while processes structure behaviour. Objects and processes are 
related in the sense that processes can be implemented with objects and 
objects are part of a process. Unlike objects, processes embrace 
observable properties of a concurrent program, such as reactivity, 
timeliness, responsiveness, priorities, and performance. These properties 
are essential for creating real-time applications. 

 

Figure 2-5 Interleaving between process architecture design and 
control law design (state diagram). 

Process architecture design is fundamental to control engineering. It is 
always part of the mindset of the control engineer. The control system 
design trajectory is a continuous interaction between process architecture 
design and control law design. The start-point and end-point take place 
at the design of the process architecture. See Figure 2-5. The design 
trajectory starts with an initial process architecture, i.e. its context 
diagram. 

The user starts with identifying the control loops and identifies the 
associated controller processes and physical processes. This may also 
include supplemental processes. After the context is created each process 
must be further refined by sub process architectures or detailed by a 
specific design method. In this latter case the control laws are designed 
for controller processes and port-based models are designed for 
describing the physical processes. The verification of the process 
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architecture is the last step in this design trajectory. Verification of the 
process architecture also implies verification of the integrity of processes 
since the total behaviour should be satisfied before continuing to the next 
stage. The next stage is usually the implementation of the process 
architecture. 

The implementation of a process architecture results in an execution 
framework. Process architecture design is essential in control system 
design and should be available to the user who is responsible for the 
resulting execution framework. For example, the tool suite dSPACE 
(2002) includes process architecture design using process diagrams, so 
that the user can specify the concurrent processes that must be ported to 
the concurrent target system. The user has some control over the 
execution framework. However, the solutions are quite practical with no 
formalism. On the other hand, the modelling and simulation tool 20-sim 
does not include process architecture design and the execution 
framework is entirely hidden by the simulator or hidden by the code-
templates when code generation is used. Consequently, the user has too 
little influence on the execution framework. Nevertheless, 20-sim is 
meant as a modelling and simulation tool with the capability of code-
generating control laws to C. The resulting C-code is commonly suitable 
for third-party frameworks.  

The semantics of process architectures should be based on a 
mathematical formalism that allows model checking and formal process 
analysis. A precise understanding of concurrency is important and 
therefore CSP is used for this purpose. In this thesis, a process 
architecture is represented as a CSP diagram which graphical notations 
implement the CSP concepts as described in Chapter 3. In Chapter 6, 20-
sim is used together with CSP diagrams for designing and implementing 
control software. 

2.4 The THESIS method 
THESIS prototypes a design method that aims specifically at the 
realization of embedded control systems, in order to handle the inherent 
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complexity of these systems. The main objective of THESIS is to support 
the engineer in eliminating design and coding errors and to reduce 
development costs. This is accomplished by the following three 
mainstreams: 

• Mathematical formalism  
Formal handling of concurrent and real-time behaviour using a 
mathematical formalism is important for proving that the 
behaviour of the software satisfies the requirements. The 
formalism should be operational in such a way that the 
specification itself is executable. Wijbrans recommended the 
theory of CSP, because this formalism can be used both for 
designing and analyzing concurrent systems. 

• Data-flow modelling  
THESIS describes a data-flow-oriented graphical specification 
method based on a Structured Analysis and Structured Design 
(SA/SD) methodology for embedded real-time systems. 
Wijbrans recommended the Hatley and Pirbhai method adapted 
with rigorous syntax and semantics definition based on CSP. 
The information hiding and encapsulation are taken from object-
oriented design and the dynamic behaviour is defined in a CSP-
like fashion. This method is used as the intermediate step in the 
refinement trajectory between control system design and its 
implementation. 

• Transputers and the programming language occam  
Wijbrans prototyped a stepwise refinement procedure that 
transforms the control algorithm into efficient (concurrent) 
occam code on transputers. The semantics and design rules that 
Wijbrans imposes to the Hatley and Pirbhai specification 
method and on entry design tools allows a straightforward 
implementation to occam and transputers. 

What is special about these streams is that they form a coherent system, 
which bridges the gap between controller design and its realization in an 
efficient way. 

The implementation of these mainstreams is outdated for the following 
reasons: 
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• Transputers have become obsolete. 

• Occam’s future is uncertain and other programming languages 
(e.g. C, C++ and Java) are used by the majority in the embedded 
software industry. 

• The Hatley and Pribhai method does not really comply with the 
current state of object-oriented technology and CSP technology. 
Object-oriented software design methods and tools dominate 
the market. 

Although THESIS does not longer keep up with new developments, its 
philosophy behind bridging the gap between controller design and its 
realization is continued by this research. In this research, different roads 
have been travelled to obtain innovation and enhancements that could 
bring THESIS up-to-date. This research comprehends the following 
significant changes: 

• Transputers are replaced by different types of processors and 
computer hardware, which are linked together on different 
kinds of networks (e.g. TCP, CAN bus, transputer-links). 

• The occam programming language is replaced by CSP libraries 
for the programming languages C, C++ and Java. 

• The Hatley and Pirbhai modelling language, as suggested by 
Wijbrans, is replaced by CSP diagrams. 

• The control engineering tool CAMAS has been replaced by its 
successor, namely 20-sim. We continue to use the control design 
concepts that is now implemented by 20-sim. 

These replacements enhance THESIS with technology that is closer 
related to the CSP concepts and object-oriented concepts. Each 
replacement fits the chain of thought behind THESIS. In the following 
chapters, this proposed methodology is presented as a standalone 
solution, independent of THESIS. 
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2.5 Conclusions 
The development of control systems is guided by concurrency. Existing 
and main stream used control engineering tools do not allow the user to 
explicitly specify the desired concurrency. Instead, much as possible is 
automated and invisible to the user, as if the user should not much be 
concerned about concurrency issues. However, the user is concerned 
about concurrency, since the user is concerned about the performance 
and customization of the system. This approach prevents further 
refinement at the design level to make the design behave more efficient 
on a particular embedded computer system. Ultimately, the user has 
little control over the resulting code framework and its performance. 
Such a framework is often too implicit and limited to a restricted class of 
embedded systems. The proposed methodology aims at eliminating the 
gap between control system design and its realization. This is based on 
the sound and formal foundation of CSP concepts, represented by the 
channel model and process model. Their abstraction and well-defined 
semantics provide the guidelines to specify concurrency and to be able to 
manage complexities during system design. Therefore, the notion of 
processes is essential for control system design, due to the fact that 
processes are adequate entities for deploying and observing behaviour in 
the system. 

In this chapter, the importance of process identification, process 
architectures design, and process analysis were discussed. Process 
identification is multidisciplinary. The design of process architectures, 
based on CSP concepts, allows one to specify the desired concurrency 
and event-driven behaviour in control applications. This implies that a 
process architecture integrates different engineering and modelling 
disciplines, each dedicated to specific processes. This results in a 
concurrent framework of concepts, which has the ability to eliminate 
discontinuities (read: gap) between the required disciplines during the 
specification, design and implementation of the control system.  

The use of CSP diagrams provides a powerful tool for capturing a variety 
of concurrency related issues and giving them a formal semantics. 
Concurrency issues are: multithreading, interrupt handling, exception 
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handling, inter-processor communication, deadline guarantees (priority 
scheduling), precise timing (sampling and actuation), reactivity and 
responsiveness, safe-guarding and fault-tolerance. These issues are 
integral part of CSP diagrams, which enable precise specification, model 
checking, and process analysis on these issues. Its abstraction simplifies 
reasoning about the overall behaviour. Consequently, design failures are 
found early in the development phase. 

After the context is determined and described by a context-diagram (i.e. 
top CSP diagram), the stages physical-system modelling and control law 
design are performed for the sub-processes. These stages are interleaved 
until both are satisfied. After the completeness of the process architecture 
is achieved, the design is implemented and tested. For systematic testing 
a hardware-in-the-loop simulation can be used. Eventually, the 
embedded control system is realized. The process architecture specifies 
how the system must behave. This pre-knowledge is a measure for 
success and likely saves time since engineering surprises are avoided and 
the outcome is predictable to a large extent. 
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Graphical Modelling Language for 
Specifying Concurrency based on CSP 

3 Graphical Modelling Language for Specifying Concurrency based on CSP 

3.1 Introduction 
In this chapter, a graphical modelling language for specifying process 
architectures is defined. The graphical modelling language is an 
improved version of the one that was published in Hilderink (2002). A 
design tool that supports this language is in development (Jovanovic et 
al., 2004). This design tool was not yet mature enough to be useful. 
Instead, a simple drawing tool was used. 

The designs that are modelled with this graphical modelling language 
are called CSP diagrams. CSP diagrams describe the blue-print of systems 
on which concurrent hardware and software aspects in embedded 
system engineering fall back. The graphical modelling language is 
defined such that it allows specifying, designing, and programming 
concurrent frameworks using a simple graphical notation. The language 
abstracts away from hardware and software implementations at the 
specification and design phases. On the other hand, the graphical 
notation can be straightforwardly translated to hardware and software 
implementations. This abstraction and refinement prevents a gap 
between design and implementation. This is discussed in Chapter 6. 

The graphical modelling language merges process-orientated and object-
orientated technologies. The graphical notation and their semantics are 
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founded on CSP concepts. These CSP concepts are a subset of the CSP 
theory, which are practical and relevant for describing the behaviour of 
concurrent systems. In this graphical modelling language, enhancements 
have been incorporated, such as exception handling, priorities, timing, 
and imperative facilities. These enhancements are essential for designing 
real-time process architectures. 

The semantics of the graphical notation and its association with CSP are 
defined. The affiliation of the language with CSP enables formal analysis 
of process architectures. Systematic techniques and rules are defined 
which are part of the language and provide guidance for detecting and 
reasoning about compositional conflicts (i.e. errors in design), deadlocks 
(i.e. errors at run-time), and priority inversion problems (e.g. 
performance burden) at a high level of abstraction and early in the 
development trajectory. 

The distinction between processes and objects separates different 
concerns, such that, reasoning about behaviour and structure becomes 
well-defined. The differences between processes and objects are 
discussed in Section 3.2. Section 3.3 gives an overview of the 
relationships in CSP diagrams. These relationships are described by two 
processes and their interrelationships. Interrelationships are described in 
Section 3.4. The relationships are distinguished between communication 
and compositional relationships. Communication relationships are 
discussed in Section 3.5. Compositional relationships are discussed in 
Section 3.6. Hierarchies in process architectures are addressed in Section 
3.7. Analysis techniques are defined in Section 3.8. These analysis 
techniques support the user in funding conflicts in the design. The design 
freedom that is incorporated in the proposed graphical modelling 
language is discussed in Section 3.9. The process of refinement and 
verification is elaborated on in Section 3.10. The conclusions to this 
chapter are given in Section 3.11. 
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3.2 Processes and objects 
The notion of processes is inevitable in order to let object-orientation 
succeed in concurrent systems. The notion of processes is explained in 
this section with regards to objects. 

A definition of processes was given in Section 2.3.1. Objects can be 
defined as follows: 

Definition (object): An object is a conceptual, visual, or real entity (or 
thing) with crisp boundaries and meaning that encapsulates attributes 
(data), behaviour (operations or methods), state (memory), identity, and 
responsibility. 

The definitions of a process and an object seem to have lots in common, 
but they are different with respect to their semantics, abstraction, and 
their interrelationships. In object-orientated methods, the term process is 
often associated with the transformation of data values (Rumbaugh et al., 
1991). The CSP theory illustrates that this is not the whole truth of 
processes. The distinction and the close relationship between processes 
and objects can be illustrated by the following example. 

Imagine a person drives a car.  The car and the driver are objects in the 
sense that they represent real things. But what about changing gear, 
accelerating, or braking? These are processes, not objects, in which the car 
and driver participate. 

The car and driver are “real world” objects from a physical perspective, 
but they are individual and self containing “real world” processes in the 
process of driving. Every method in an object specifies a fragment of 
behaviour and applies when the methods are invoked. This behaviour 
has a meaning only when the method is processed, i.e. when the object is 
part of a process. Objects may exist at the same time, but there is no 
interrelationship which tells that they operate in parallel. Parallelism 
concerns processes, not objects. Furthermore, an object cannot be 
considered to be real-time. An object is said to be real-time only when it 
participates in a real-time process. Therefore, one can put a “real-time” 
tag on a process but not on an object. 
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In object-oriented programming languages, objects commonly implement 
the code structure and data structure of a program. Concurrency is not 
dealt with at all. The inclusion of multithreading makes the object-
oriented paradigm unnecessarily complicated, since threads are not 
object-oriented. Obviously, threads are process-oriented. The notion of 
processes, as for example those defined in CSP, provides concurrency at 
an appropriate level of abstraction that scales well with complexity.  

Processes and objects play different roles with different abstractions in 
concurrent systems. Processes are concerned with concurrency and 
behavioural structures, whereas objects are concerned with 
implementation structures. In this thesis, a process can play the role of a 
CSP process or a process instance. This is elaborated on in Section 3.5.4 
and 4.3. Objects implement process instances, and process instances 
implement CSP processes. Each of these roles comprises different 
interfaces and different concerns, whereby CSP processes are more 
abstract than objects. 

Processes and objects are both message-passing driven with different 
intentions. Objects can directly invoke services on other objects; the 
invokee always follows the invoker. This type of message-passing is 
synchronized on a sequential basis, namely run-to-completion. The next 
service is performed after the previous one has completed. Processes 
cannot directly invoke services on other processes. Processes can only 
invoke services within themselves. They can be influenced by 
communication with other processes using intermediate objects, i.e. 
channels or barriers. Message-passing is synchronized on the basis of 
run-to-rendezvous. 

Processes and objects are distinct by their different kinds of relationships. 
The relationships between processes are classified by communication 
relationships and compositional relationships. The communication 
relationships specify producer/consumer, client/server, or 
communication-peers scenarios. The compositional relationships specify 
parallel, sequential, alternative, or exceptional dependencies. The 
relationships between objects are classified by generalization 
(inheritance), association (invoker/invoke scenario), dependencies, and 
aggregation.  
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Furthermore, the interface of a process is different from the interface of 
an object. In this proposed methodology, a process has two separate 
interfaces, namely the process communication interface and the process 
instance interface. The process communication interface is used during the 
execution of the process and the process instance interface is used before 
or after the execution of the process. Both interfaces are safely 
synchronized (thread-safe) and they cannot be used at the same time. 
These interfaces are discussed in Section 3.5.4. An object has a single 
interface that specifies a set of methods and variables, which the object 
offers. These methods and variables are exposed to concurrency. Thread 
synchronization constructs are required when objects are exclusively 
shared by multiple threads. The thread synchronization constructs are 
integral part of objects and must be explicitly implemented by their 
methods. Processes are synchronized by constructs that implement the 
communication relationships and the compositional relationships. See 
Chapters 4 and 6 

The proposed graphical modelling language captures this notion of 
processes, which allows describing the (real-time) behaviour of 
concurrent systems. At a lower level of abstraction, objects are required 
to implement processes. 

3.3 The CSP diagram 
A CSP diagram is a graph of processes and their interrelationships, 
which models a concurrent (sub-) system. CSP diagrams are used for 
specifying, designing, and programming process architectures. The 
graphical notations and their semantics are derived from CSP. The 
interrelationships are displayed as lines. Processes are displayed as 
circles, bubbles, or rectangles. 

Two processes and their interrelationship form a relationship. Some 
relationships are communication-oriented and some are composition-
oriented. Each orientation can be viewed as 
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• a communication diagram representing communicational 
relationships; i.e. data-flow between processes, 

• a composition diagram representing compositional relationships; 
i.e. control-flow between processes, 

• a hybrid diagram representing both communicational and 
compositional relationships. 

An overview of these relationships, which are defined by the graphical 
modelling language, is given in Figure 3-1. 

 

Figure 3-1 Overview of CSP relationships: 
(a) communication relationships, 
(b) compositional relationships. 

The symbols at the ends of the communication interrelationships specify 
the type of communication and the roles the processes play at the point 
of communication. The symbols on top of the compositional 
interrelationships are operators that specify different fundamental 
behaviours in which the associated processes participate. Two processes 
are related to each other by one compositional interrelationship and zero 

   
P 

P Q 

Q 

P Q 

P Q 

P Q 

P Q 

P Q 

P Q 

   

      

 Δ   

Communication relationships Compositional relationships 

channel 
communication 

barrier 
communication 

sequential 

equally-prioritized 
parallel 

equally-prioritized 
alternative 

unequally-prioritized 
parallel 

unequally-prioritized 
alternative 

exception 
handling 

(a) (b) 

P Q 

state 
communication 



3.3 The CSP diagram 

 

55 

or more communication interrelationships. Thus, CSP diagrams 
comprehend both data-flow and control-flow modelling. 

CSP diagrams can be used together with object-oriented methods (Selic 
et al., 1994; UML, 1998) and structured methods (Hatley and Pribhai, 
1987; Ward and Mellor, 1985; Yourdon and Constantine, 1979). Other 
modelling languages, such as the UML, are recommended for describing 
the structural and functional aspects. The graphical elements can be 
stereotyped in the UML, which enables the integration with the UML. 
Consequently, one can omit the concurrency model of the UML and 
replace it with CSP diagrams. 

CSP diagrams are computational models that are executable in the sense 
that they contain information suitable for simulation, code generation, or 
model checking. A CSP diagram can be viewed as a kind of state 
diagram. CSP diagrams scale well with complexity. Composing 
processes (states of execution) in CSP diagrams scales linearly with 
adding or removing processes or interrelationships. Therefore, 
refinement does not cause state explosions. 

Priorities are essential in making decisions, which improves the 
performance of process architectures in systems with shared resources; 
e.g. a single processor or a communication channel for which 
interleaving is imposed. The CSP theory abstracts away from priorities, 
but it allows us to add priorities by way of refinement. The graphical 
modelling language includes equally-prioritized and unequally-
prioritized operators. These operators include fairness and unfairness iu 
the process architecture. These operators apply to true-parallelism (i.e. 
processes distributed on multiple processors) and semi-parallelism (i.e. 
processes on a single processor). 

The graphical modelling language inherently supports techniques for 
checking the correctness of CSP diagrams. With these model checking 
techniques, the user is able to determine and to reason about failures, 
mismatches with the user’s mindset, deadlocks, and priority inversion 
problems in a design. Model checking can be automated by the design 
tool or performed by other formal model checking tools that are 
available. Feedback from these model checking tools can support the 
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user in understanding and solving errors or conflicts in the design of the 
process architecture. Furthermore, the user should be aware of the 
semantics of the notations, but the user does not have to be aware of the 
underlying mathematics. 

3.4 Interrelationships 
The simplest interrelationship is concurrency, whereby processes exist at 
the same time and possibly communicate with each other. Processes 
execute and synchronize in several ways, which can be expressed by 
interrelationships between the processes. The interrelationship is 
depicted as a labelled line (or edge) between two processes, as shown in 
Figure 3-2. The figure shows a relationship of two processes connected 
by an interrelationship on which both processes depend. Each 
interrelationship represents a synchronization construct in the process 
architecture. 

 

Figure 3-2 Interrelationship between processes. 

Special symbols can be attached to the ends of the line to indicate a 
directional interrelationship between processes. It is important to note 
that the line should be seen as distinct from these symbols. The line itself 
is undirected because events are symmetric (Roscoe, 1998). The line 
renders an event in which both processes engage. Depending on the kind 
of interrelationship, the associated event can be a communication event, 
termination event, exception event, or a timeout event. The symbols are a 
gloss on this. They indicate the polarization of message-passing or they 
assist in composing processes. 

A relationship is identified with id and is related to a specific Type. These 
attributes are combined with “:” as one label, which is refered to as an 

⊕   
+ symbol + + symbol + 

id:Type [timing] 

id:Type id:Type 
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identifier label. The id attribute specifies a unique name that refers to the 
declared relationship or process. The operator and identifier labels are 
floating labels and are attached with a thin line to the centre of the 
interrelationship. Like processes, these labels can be moved in the 
diagram. The symbols, operator, identifier, and type, specify the type of 
interrelationship between two processes. 

The timing attribute is optional (see brackets) for communication 
relationships. This attribute can be used to specify timed communication 
events. Timed communication events offer the ability to specify the real-
time behaviour of the process architecture. The timing attribute can 
contain an exception parameter, which will be thrown by the 
interrelationships to the associated processes when the specified deadline 
was not met. The timing attribute is not defined for compositional 
relationships. This option is reserved for future use. 

The symbol ⊕  represents an operator, which is strictly used in 
compositional relationships. An overview of the possible operators was 
shown in Figure 3-1b. The operator is depicted on top of the 
compositional interrelationship line and the identifier label is usually 
depicted below the line. Communication interrelations have no operator 
and it is replaced by the identifier label located on top of the line.  

The Type attribute of the interrelationship is one of the following types: 

• primitive data type,  

• class name for an object type,  

• service interface type,  

• reserved class name representing barrier synchronization, 

• reserved class name representing a compositional process.  

The first three types are used in communication relationships and the last 
two types are used in compositional relationships. Primitive data types 
and object types address data channels. Service interface types address 
call channels. The reserved class names are omitted from the identifier 
label, because these are redundant or derivable from the operator or 
symbols.  



 3. Graphical Modelling Language for Specifying Concurrency based on CSP 

 

58

In Figure 3-1 and in other examples, the identifier labels on 
compositional relationships are hidden. This means that they are 
anonymous or simply invisible. Anonymous relationships are useful for 
sketching a compositional diagram without worrying about the exact 
names. Identifier labels can be specified and visualized by the user until 
later in the design trajectory. Identifiers that do not directly concern the 
user can be automatically generated by the design tool. These identifiers 
remain hidden. The naming convention in CSP diagrams is the same 
convention as used in Java. 

Each process has a unique identifier id with a (non-unique) Type depicted 
in the rectangle. The Type attribute is the process class name from which 
the process is instantiated. A process class can be used to instantiate 
multiple processes with the same behaviour. In this thesis, several 
examples use capital letters P, Q, R, S, T, and U to identify distinct 
processes. These are equivalent to respectively p:P, q:Q, r:R, s:S, t:T, and 
u:U. Label P is a short notation for p:P. These abbreviations are used to 
simplify the related algebraic expressions. 

3.5 Communication relationships 
Two communicating processes participate in a communication 
relationship. A communication relationship is defined as follows: 

Definition (communication relationship): A communication relationship is 
a labelled and directed relationship, which represents message-passing 
between a sender process and a receiver process. 

Three classes of communication interrelationships are specified, namely 

• channel communication, 

• barrier communication, 

• state communication. 

Channel and barrier communication perform message-passing between 
executing processes. State communication performs message-passing 
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between non-executing child processes and their parent process via state 
variables. 

3.5.1 Channel communication 

Message-passing between processes via channels is symbolized by a 
solid arrow, as depicted in Figure 3-3.  

 

Figure 3-3 Channel communication relationship. 

The arrow head symbol ‘►’ is attached to the receiver of a message and 
the tail of the arrow is attached to the sender of the message. This does 
not necessarily imply that data is moving strictly from tail to head at 
communication. Data may very well be returned at the end of the 
invocation. Furthermore, the communication relationship specifies that 
communication can take place between two processes (i.e. two-way) 
whereas it does not specify exactly when communication takes place. The 
actual channel invocations are specified by a few primitive 
communication processes, as described in Section 3.6.8. Both 
participating processes must rendezvous, whereby the processes are 
willing to engage in the communication event. In some circumstances, 
buffered channels can be used to solve particular performance issues. 
These issues are discussed in Section 3.8.5. 

The identifier id is the name of the channel and Type expresses the type of 
message passing. The timing parameters ts, T, and Exception are optional. 
The occurrence of communication events can be set to a specified 
moment in time or at periodical moments in time; i.e. respectively @ts, 
and @ts,T. The parameters ts and T are in microseconds, where ts is the 
absolute start time and T is a periodical interval relative to ts. A channel 
with timing parameters is called a timed channel. In case an Exception 
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parameter is specified, an instance of Exception is thrown to the related 
processes when one or both processes are ready after the specified time ts 
or ts+n.T with  

t ts
n n n

T
+⎧ ⎫−⎡ ⎤∈ ∧ =⎨ ⎬⎢ ⎥⎢ ⎥⎩ ⎭

 

The arrow designates the role of the processes in the relationship. A 
process at the tail of an arrow can play the role of a producer or client. A 
process at the head of an arrow can play the role of a consumer or server. 
Thus, channel communication specifies producer/consumer or 
client/server relationships. 

 

Figure 3-4 Channel communication scenarios. 

Producer/Consumer relationship (data channels) 

A producer/consumer relationship is based on data channels between a 
producer and consumer process. The Type of the data channel specifies 
either an object or a primitive data type that can be passed from producer 
to consumer. Data channels are unidirectional, i.e. data can be passed in 
the direction of the arrow.  

An example of a producer/consumer relationship is shown in Figure 
3-4a. In this example, length:Integer specifies a channel name length that 
can pass objects of type Integer. Or identifier label length:int specifies a 
channel that can pass integer data primitives of type int. 

length:Integer 

chan:OnOff 

(a) Producer/Consumer data channel communication 

(b) Client/Server call channel communication 

consumer:Cons producer:Prod 

Client:Clnt Server:Srvr 
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A data channel can be one of two possibilities, namely: 

• unbuffered channel (rendezvous), 

• buffered channel (fifo, super-sampling, sub-sampling, etc.). 

Unbuffered channels usually provide an optimal reactive behaviour, as 
outlined by the process architecture. Buffered channels can improve the 
performance of a process architecture in circumstances where unbuffered 
channels cannot sufficiently decouple multiple frequencies. This is 
discussed in Section 3.8.5. 

Client/Server relationship (call channels) 

A client/server relationship is based on call channels between a client and 
a server process. Type indicates a service type, which specifies a set of 
methods. 

The client process can request a method that is a member of the service 
type of the call channel. The requested method can only be accepted by 
server processes that implement the service type. When a method is 
accepted it is performed by the server process. A method can be 
provided arguments and a return value. Therefore, call channels can be 
bidirectional, i.e. data can be passed in both directions of the arrow. The 
client process can send data as arguments along the call to the server 
process, and on the completion of the method the resulting data can be 
sent back to client process. 

In Figure 3-4b, the service type OnOff specifies the methods on() and 
off(). Srvr must implement these methods and it must be willing to 
accept any calls. 

Consistency between a service type, server, and client can be checked. A 
server that implements service type S may accept certain requests A in S, 
thus A S⊆ . The client process may request a set of calls, denoted by C, 
on a call channel with service type S. It is important that C is a subset of 
A otherwise certain calls will never be accepted, thus C A⊆ ; otherwise 
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C S A⊆ −  and this would result in a deadlock or livelock. This design 
error is called a service conflict.  

Identifier Labels 

Identifier labels on communication interrelationships are floating labels, 
which are connected to arrows in various ways. When the arrow is 
connected between processes, the identifier label is connected with a thin 
line to the centre of the arrow. On the other hand, an identifier label can 
be used to create a joint for shared communication interrelationships or 
to relay communication interrelationships.  

Figure 3-5 shows three different ways in which processes can be 
connected via channels. These three representations do not change the 
semantics of channel communication. Figure 3-5a shows the identifier 
label on top of a channel. Figure 3-5b shows that the label can be used as 
a joint between two parts. Labels can be duplicated and each duplicate 
refers to the same instance. Figure 3-5c illustrates two processes 
separated from each other via duplicated labels. This notation is similar 
as for barriers (Section 3.5.2) and state variables (Section 3.5.3). 

 

Figure 3-5 Three ways to connect processes via a channel: 
(a) directly connected, 
(b) via a label, 
(c) via label duplicates. 

Shared channel communication 

Channels can be shared between two or more processes. The arrow may 
consist of branches of multiple tails and/or multiple arrow heads. This is 

c:int 
P Q 

c:int 

P Q 
  

c:int 

P Q 
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depicted as a fish bone. Four different channel configurations are 
supported, as shown in Figure 3-6. 

The configuration displayed in Figure 3-6a depicts channel 
communication between two processes, as previously discussed. The 
configurations in Figure 3-6b and 3-6d specify a choice of service 
between multiple writers. The configurations in Figure 3-6c and 3-6d 
specify a choice of delivering messages between multiple readers. The 
choice is non-deterministic in relation to time. 

 

Figure 3-6 Channel configurations. 

On a shared channel, the service or delivery between multiple readers 
and writers can be uncertain or unfair. For example, in practice and in a 
worst case scenario, a reader may read all the time and other readers 
have no chance to get a message. This is known as starvation. A fair 
queuing policy can prevent starvation between the alternating processes. 
The graphical modelling language has the taxonomy for detecting and 
reasoning about this pathological problem. The implementation of 
shared channels is concerned with the fairness and the performance of 
the program. This is elaborated on in Chapters 4 and 5. 

The configurations shown in Figure 3-6b, 3-6c and 3-6d virtually swap to 
the configuration in Figure 3-6a. Shared channels do not broadcast 
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messages. In case messages must be broadcasted over many channels, a 
delta process must be used. A delta process reads from an input channel 
and then outputs the data on multiple output channels in parallel. Delta 
processes are only useful with data channels. Delta processes can be 
implemented in two ways: as an explicit or as an implicit delta process. 

Figure 3-7a illustrates the use of an explicit delta process.  

 

Figure 3-7 Shared data channel and broadcasting messages, 
(a) broadcasting with an explicit delta process, 
(b) broadcasting with an implicit delta process. 

An explicit delta process is part of the compositional relationships. This 
implies that the delta process can only terminate when it is told to 
terminate. This requires a poison token, an additional channel, or 
poisoning channels in order to stop the delta process. A poison token is a 
special token that is send via the input channel. Once the token is 
received, the delta process will terminate. An additional stop channel is 
also a solution. Both solutions lead to graceful termination (Welch, 1989). 
Poisoning channels is a technique that allows channels to throw 
exceptions to the associated processes when they are willing to 
communicate on a poisoned channel. The exception handling must 
gracefully terminate the delta process. 

A simplified solution is the implicit delta process. In Figure 3-7b, an 
implicit delta process is depicted as a black circle from which 
broadcasting spawns. This black circle has already been shown in the 
context diagram in Figure 2-4. This delta process is not part of the 
compositional relationships of the processes that participate in the 
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communication relationship. Therefore, an implicit delta process is not 
explicitly part of the compositional relationships and no explicit 
measures are required to stop the delta process. The resulting framework 
can take care of starting and terminating implicit delta processes. 

Unconditional or conditional channel communication 

The previous communication relationships express unconditional 
communications, i.e. if both participating processes are ready for 
communication then both are committed to communication, for which 
they engage in a communication event and withdrawing is impossible. 
Conditional communication is a circumstance whereby the readiness of the 
channel is required as a condition. The readiness is true when at least one 
process is willing to communicate over the channel. A process at the 
conditional end of the channel may commit in communication when the 
other side is willing to communicate or it may withdraw when this 
condition is not met. Conditional communication is specified by the 
alternative relationship. See Section 3.6.4. 

3.5.2 Barrier communication 

Another communication relationship is the barrier synchronization, in 
which two or more processes participate at the same time. A fixed 
number of processes are required to synchronize their execution at some 
point before proceeding. A barrier is depicted as a fishbone of arrows 
between two or more processes (i.e. multi-way). Each end of the arrow is 
symbolized with a diamond ‘♦’ symbol; shaped by concatenation of ◄ 
and ►. A barrier has only one type, namely Barrier. This type is reserved 
for the barrier relationship and is omitted from the identifier label. See 
Figure 3-8. 
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Figure 3-8 Barrier synchronization relationship. 

The timing parameters ts, T and Exception are optional and are used in 
the same way as timed channels, as discussed in Section 3.5.1. A barrier 
with timing parameters is called a timed barrier. 

An example of six processes that synchronize on a single barrier is 
depicted in Figure 3-9. 

 

Figure 3-9 Barrier synchronization. 

When all processes reach the barrier synchronization, the barrier 
construct can communicate information between the processes in a 
unidirectional or bidirectional way. All processes continue after 
communication is performed.  

A barrier synchronization pattern can be described in terms of a protocol 
of channel communications (Roscoe, 1987). The protocol is described as a 
network of parallel processes that communicate with each other via 
channels. Therefore, a barrier can encapsulate a sub-diagram, whereby its 
completion is observed as a communication event. 

3.5.3 State Communication 

State communication is used to initialize state values and to pass state 
values to other processes instances before or after they are executing. 
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State communication is formulated as follows: 

Definition (state communication): State communication is the ability of 
the parent process to communicate states between itself and its child 
process instances.  

State communication requires state variables to communicate the 
postconditional state of one process instance to the preconditional state 
of another process instance. Note that the term ‘process instance’ is used. 
A state variable is defined as follows: 

Definition (state variable): State variables are variables that manifest a 
precisely measurable property or a deterministic attribute, which 
characterizes the state of a process, independent of how the process was 
brought to that state. 

Preconditional and postconditional states are formed by state variables. 
A preconditional state must be true or valid before the process executes 
and the postconditional state must be true or valid after the process has 
terminated. In case the preconditional or postconditional states are 
invalid, the results of the process can be unpredictable or wrong. 

State communication is only allowed before or after the execution of 
child processes. State communication involves a state handling method 
that can initialize or return state variables. State communication does not 
describe concurrency aspects; it must not be used for process communication. 
Furthermore, state communication does not establish communication 
events, since it relates processes to state variables and not processes 
directly to each other. Note that parallel processes must exchange data 
using channels or barriers, and not via state variables. 

A parent process has hold of the process instances of its child processes. 
The parent process can update the preconditional state of its child 
processes according to the process instance interface. State variables that 
are not specified by the process instance interface cannot be updated by 
the parent process. See Section 3.5.4. Public state variables can be 
updated by the parent process before the compositional relationship (to 
which the process belongs) is executed. Public state variables can be 
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retrieved from the child process after the compositional relationship has 
terminated.  

Simultaneous updating of the same state variable is forbidden and 
prohibited by safety rules. Safety rules are described in Section 3.8.1. 
These rules declare that state variables are implicitly synchronized by the 
sequential constructs in the process architecture. This is similar to using 
variables in a sequential programming language.  

The initialization of a process is depicted with an open arrow (i.e. open 
arrow head) towards the process. See Figure 3-10a. In this example, the 
state variable is identified as id:Type. The content of the state variable is 
passed to Q right before the relationship (to which Q belongs) is 
executed. The Type attribute is a primitive data type or an object type 
(class). 

The state update of the parent process is depicted with an open arrow 
between a child process and a local variable. This arrow is directed from 
the child process towards the local variable. See Figure 3-10b. In this 
example, the variable id is updated immediately after P has terminated. 

A state variable of a child process can be used to initiate another child 
process. See Figure 3-10c. This example is a simplified version of Figure 
3-10a and 3-10b together. It depends on the compositional 
interrelationship between P and Q whether or not 

• P updates Q via id (in sequence) 

• or Q is updated by id before P updates id (in reverse sequence). 

 

Figure 3-10 State initialization: 
(a) child process initialization, 
(b) parent process state update, 
(c) state passing between child processes. 
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Figure 3-11 shows two processes performing the processes f and g. This 
example shows state dependencies between f and g. 

 

Figure 3-11 Example of state initialization. 

This example depicts the following equations: 

( , )
( , , )

=
=

z f x y
v g y z w

 

A cyclic dependency, as in Figure 3-12, does not cause an algebraic loop. 
Be aware that the states can be updated with a shift in time. This is 
determined by the compositional relationships. 

 

Figure 3-12 Example of algebraic loop. 

This example depicts the following equations: 
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The indexing of the state variables denotes a sequence between the 
current (i) and the previous (i-1) values. This sequence prevents race 
hazards on state variables. Rules for safely sharing state variables are 
described in Section 3.8.1. 

A state variable can be initialized with a start value. Figure 3-13 
illustrates this in three different ways. In the examples, the state variable 
x is allocated in the parent process of P. P is initiated by x right before 
executing P and x is updated right after P has terminated. Figure 3-13a 
shows a state variable x being initiated with value 0.0 when the process is 
constructed. The state variable is not re-initiated on the next run of P. It 
remembers the previous value. Instead of using two separate open 
arrows between a process and a state variable one can use a single 
bidirectional open arrow. See Figure 3-13b. Figure 3-13b illustrates 
something similar, whereby x is initiated with the value of another 
variable x0. This notation is useful when x0 is documented as the 
(constant) initial value of the process and x is a variable in the workspace. 
In case a variable needs to be initiated each time before the next run, the 
parent process Q must initiate the state variable x of its child process P. 
This is illustrated in Figure 3-13c. 

 

Figure 3-13 Initiating state variables: 
(a) initiate x once with value 0.0, 
(b) initiate x once via state variable x0, 
(c) initiate x before every run of process Q. 
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One can easily distinguish between channel communication and state 
communication. For example, Figure 3-14 shows a process that is 
connected with solid arrows and open arrows.  

 

Figure 3-14 Example of mixed channels and variables. 

In this example, the process communicates with other processes via the 
solid arrows. State communication is performed by the open arrows and 
they are performed right before P is executed and right after P has 
terminated. Obviously, the labels c, d and e belong to the process 
communication interface and the labels x, y, and z belong to the process 
instance interface. Solid arrows and open arrows cannot be connected. 
Connection is only possible via primitive communication processes, 
which are discussed in Section 3.6.8. 

3.5.4 Process interface 

The process interface consists of two separate interfaces, namely the 
process communication interface and the process instance interface. The 
process communication interface comprises a set of public channel-ends 
and barrier-ends. The process communication interface can specify a 
protocol of communication via these ends, which describes its behaviour. 
The process instance interface defines a set of public state variable-ends 
that are responsible for initializing the preconditional state or for 
retrieving the postconditional state of the process instance. These 
channel-ends, barrier-ends, and state variable-ends are called the ports of 
the process interface. 

The process communication interface is used during the execution of the 
process and the process instance interface is used before or after the 
execution of the process. They cannot be used at the same time. 
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Each pair of ports that is supposed to be connected must be compatible. 
Incompatible ports cannot be connected. For example, a channel-output 
of message type Integer cannot communicate with a channel-input of 
message type Float. Also, a producer process cannot communicate with a 
server process, because the producer process requires a data channel and 
the server process requires a call channel. Furthermore, state variables 
can be connected to other state variables of the same type. 

Floating identifier labels that are specified as ports in the process instance 
interface and the process communicating interface must be used to 
connect the process with the outside world. These ports can be depicted 
as identifier labels on the edge of the process in the upper CSP diagram. 
This was already shown in Figure 3-13c. The identifier labels are called 
port labels. A port label and the corresponding floating identifier label 
must have the same name and of the same port type. Port labels are 
annotated by a thin line to the end of a communication interrelationship 
and the entry/exit point of the associate process. Edge labels are essential 
for the user to know to which port or state variable the interrelationship 
is connected. Examples of data channel, call channel, barrier, and state 
communication are given in Figure 3-15. These annotations can be 
visualized or hidden at wish. 

In Figure 3-15a, the producer process performs an output on data channel 
length via port size. The consumer process performs an input on port len. 
These outputs and inputs are discussed in Section 3.6.8. In Figure 3-15b, 
the client process requests a call on the call channel chan via port out. The 
server process accepts the call via port in. In Figure 3-15c, the processes 
one and two synchronize on the barrier-ports bar and join. They are linked 
together via barrier. In Figure 3-15d, process one provides data for 
initializing process two. The date is passed from y to z via x. 
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Figure 3-15 Process interfaces shown by label annotations. 

Figure 3-16 illustrates examples of processes P and Q that are connected 
respectively via floating identifier labels and their ports. The floating 
identifier labels and port labels establish a connection in a hierarchical 
architecture. 

Roscoe described that: “A CSP process is completely described by the 
way it can communicate with its external environment. In constructing a 
process we first have to decide on an alphabet of communication events – 
the set of all events that the process (and any other related process) might 
use. The choice of this alphabet is perhaps the most important modeling 
decision that is made when we are trying to represent a real system in 
CSP.”. The process communication interfaces represent the alphabets of 
the processes. Therefore, the design of a communication diagram is most 
important. The communication diagram will determine the alphabets (or 
process communication interfaces). The compositional relationships will 
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combine these alphabets to new alphabets. These alphabets should be 
consistent with the specification. These alphabets are required for 
describing the appropriate parallel processes. See Section 3.6.3. 

 

Figure 3-16 Examples of edge and floating labels. 

Channel and barrier ports make up the alphabet of communication 
events, not the state communication ports. 
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3.6 Compositional relationships 
Compositional relationships are a kind of relationships between 
processes that are useful for describing the execution order of 
communicating processes. Compositional relationships are defined as: 

Definition (compositional relationship): A compositional relationship is a 
labelled relationship between two processes whereby the label is a binary 
operator that expresses their compositional behaviour. 

Figure 3-17 shows two processes in relation to each other. This represents 
a composition of two processes, which semantics are described by the 
operator ⊕  on top of the connection.  

 

Figure 3-17 Compositional relationship. 

Action bodies (e.g. actionP and actionQ) are optional and these can be 
specified next to the process when at some point in the process 
architecture a state change is required. The state change is part of a state 
machine specification (automaton) that is local to the parent process. 
Guard bodies (e.g. guardP and guardQ) are required when the processes 
are related to a choice. Action and guard bodies are discussed in Section 
3.6.1. 

The operator ⊕  can be one of the following sets: 

• { , , , , , , }⊕∈ → ← Δ Δ when no guard bodies are specified,  

• { , , }⊕∈  otherwise.  

The operators { , , }  require the specification of guards on all 
participating processes. For the other operators, guards have no effect. 
The operators with a small arrow on top of the symbol are directed 
operators, whilst the remainders are undirected operators. 

actionP/guardP actionQ/guardQ 

P Q 
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The identifier label id attributes a unique name of the construct. 
Compositional relationships are typed by their operators. For 
example, operator symbol  is equal to id:Parallel, whereby Parallel is a 
reserved class name for the parallel operator. Other reserved class 
names are Sequential, Alternative, PriParallel, PriAlternative, and 
ExceptionCatch. The Type attribute is redundant and is therefore 
omitted. In Chapter 4, it will be shown that these types represent 
special processes or constructs in Java. 

Each compositional relationship is explained in Section 3.6.2 till Section 
3.6.5. The identifier labels are anonymous and omitted in the next 
sections. 

3.6.1 Automaton 

The behaviour of a process architecture depends on state changes in 
time. State changes can be specified by state communication or using 
action bodies. Guard bodies are used to take decisions so that the process 
architecture behaves in one way or the other. An action body or a guard 
body can be specified next to a process connected with a thin line to 
show its association with the process. This is illustrated in Figure 3-17. 
Only one action body or guard body can be specified per process. The 
action and guard bodies are not an integral part of the associated process 
but they are part of a local state machine or automaton; e.g. to control 
repetitions (Section 3.6.4) and conditional communication (Section 3.6.6). 

Action bodies contain operations that change variables in the process; i.e. 
in the parent process of the process to which the action body is associated 
with. An action body will be executed right before the process will be 
executed. For example, Figure 3-17 specifies the algebraic expression 
( ; ) ( ; )P Qaction P action Q⊕ . The scope of variables is determined by the 
parent process in which they are declared. The updating and reading of 
state variables by action bodies follow certain rules. These rules are 
similar for state communication in Section 3.8.1. Instead of open arrows, 
the action bodies use assignment statements. 
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The following two methods illustrate two ways to increment a variable 
that is used to create an imperative construct, which is part of a state 
machine. An imperative construct can be created by an action body and a 
floating variable, or it can be created by state communication. See 
respectively Figure 3-18a and 3-18b. Combinations of the two methods 
are also possible. 

 

Figure 3-18 Two examples of incrementing a variable: 
(a) incrementing by an action body, 
(b) incrementing by a process. 

Here, the increment statements i++ and y++ (in P) are short notations for 
i=i+1 and y=y+1. These increment statements require bidirectional state 
communication. In Figure 3-18a, the variable i will be incremented right 
before P is executed. In Figure 3-18b, the variable i will be incremented 
right after P has terminated. 

3.6.2 Sequential relationships 

A sequential relationship (SEQ) between processes P and Q is denoted by 
the label ‘→ ’. This sequential composition is written as P→Q. This has 
strong similarities with the CSP single action transition P √⎯⎯→Q. This 
process will behave as Q if P has successfully terminated (√-event) 
otherwise this process behaves as P. These semantics are relaxed by 
saying P is executed before Q, which provide more design freedom. This 
relationship (being a process) terminates when P and Q successfully 
terminate. The sequential relationship is depicted in Figure 3-19. 
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y:int 

P i:int 
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Figure 3-19 Sequential relationship. 

A sequential relationship is written as (P,Q,→ ). A sequential relationship 
of more than two processes can be represented in the same way, for 
example (P,Q,R,S,→ ). See Figure 3-20a. Relationship (P,Q,R,S,→ ) also 
represents other partial relationships, such as, (P,Q, → ), (P,R,→ ), 
(P,S,→ ), (Q,R,→ ), (Q,S,→ ), (R,S,→ ), (P,Q,R,→ ), (P,Q,S,→ ), (P,R,S,→ ) 
and (Q,R,S,→ ). Only tuples can be depicted in a CSP diagram. See Figure 
3-20b. Thus, Figure 3-20a implies 3-20b. 

 

Figure 3-20 (a) SEQ construct, 
(b) over-specified SEQ construct. 

This example is written as 

( ) ( ) ( ) ( )( ), , , , , , , , , , , , ,P Q R S P Q R S P Q Q R R S→ → → ⇔ → = → → → →  

A sequential composition in CSP is precisely described by the algebraic 
expression P;Q. This expression defines a process that behaves as P and 
after P terminates it behaves as Q. The expression P;Q is a special case of 
P→Q. The symbol ‘→ ’ gives more specification freedom than ‘;’. One 
can specify P→R without knowing whether or not it must be P;R or 
P;Q;R. For example, the partial relationships in Figure 3-20 cannot all be 
represented with ‘;’. It is obvious that (P,S,→ ) does not represent P;S. 
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P Q R S 
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P Q 
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The ‘;’ and ‘→ ’ operators share common properties; e.g. they have no 
symmetry laws. The following shows when ‘;’ can be used for ‘→ ’. 

The relationship (P,S,→ ) can be written as 

( ), , , \P X S X→  

where X is a set of processes that can be found on the longest path 
between P and S.; i.e. P and S are not in X. This algebraic expression has 
resemblance with the hiding operation in CSP. For example, in case 

{ },X Q R= , one can write 

( ) ( ) { }, , , , , , \ ,P S P Q R S Q R→ ⇐ →  

Here, Q and R are hidden and P and S are visible and of interest. This 
hiding operation is useful for determining whether or not P→S can be 
written as P;S. If no other processes can be found between P and S on the 
longest path between P and S then this means that X is empty. In other 
words, they are called neighbours. A neighbour sequential relationship is 
written as (P,S,→ )∅ and equals 

( ) ( ), , ,{}, , \{} ;P S P S P S∅→ = → =  

A chain of neighbour sequential relationships is written as 

( ) ( ) ( ) ( )( ), , , , , , , , , , , , , ; ; ;P Q R S P Q Q R R S P Q R S∅ ∅ ∅ ∅→ = → → → → ⇔  

This expression implies the longest paths between the processes P and S 
from P to S. Generally, one can write 

( )0 1
0.. 1

,..., , ;n i
i n

P P P− ∅
= −

→ =  

This form allows transformation to a sequential code-construct as 
discussed in Section 4.6.2. The longest sequential paths of sequential 
operators that are pointing in the same direction along the path are 
eligible for implementation. The redundant relationships are useful for 
consistency checks in designs. This is discussed on Section 3.8. 
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3.6.3 Parallel relationships 

Equally-prioritized parallel relationships 

An equally-prioritized parallel relationship (PAR) between processes P 
and Q is denoted by the label ‘ ’. This parallel composition is written as 
P Q. This process will behave as P and as Q in parallel. This process 
terminates when all participating processes P and Q have terminated. 

The parallel relationship between P and Q specifies that these processes 
are competing at equal priorities. See Figure 3-21. This relationship is 
written as (P,Q, ). 

 

Figure 3-21 Equally-prioritized parallel relationship. 

A multiple composition (P,Q,R,S, ) represents P Q R S. See Figure 
3-22a. This diagram shows the relationships (P,Q, ), (Q,R, ), and (R,S, ). 

What are the relationships (P,R, PR
⊕ ), (P,S, PS

⊕ ), and (Q,S, QS
⊕ )?  See Figure 

3-22b. The solution is ambiguous. For example, (P,R,→ ) or (P,R,← ) are 
valid specifications between P and R. This shows that the unspecified 
relationships do not have to be ‘ ’. The choice of operator could be 
performed by the design tool based on certain criteria. The choices are 

, , { , , , , , , }
PR PS QS
⊕ ⊕ ⊕∈ → ← Δ Δ

 

Note that any choice must not cause compositional conflicts, otherwise 
the operator is invalid. See Section 3.8.4. 

In case the user wants to specify that all processes must be performed in 
parallel, the diagram must be completed as in Figure 3-22c. The use of 
hierarchical notations can prevent many lines and cycles. This is 
discussed in Section 3.7. 

   
P Q 
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Figure 3-22 (a) ambiguous PAR construct, 
(b) unambiguous PAR construct, 
(c) completely specified PAR construct. 

Figure 3-22a is ambiguous without assumptions. Figure 3-22c is uniquely 
specified and this diagram can be written as 

( )0 1 1
0.. 2

,..., ,n i n
i n

P P P P− −
= −

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

The design tool could apply a criterion (assumption) that specifies that 
Figure 3-22a and 3-22c are equal. In this case, an equally-prioritized 
parallel composition with n processes in the form of Figure 3-22a and 
3-22c is written as 

( )0 1
0.. 1

,..., ,n i
i n

P P P−
= −

=  

The processes P0…Pn-1 are randomly ordered since operator ‘ ’ is 
symmetrical. Such criterion may simplify the understanding of parallel 
patterns, such as in Figure 3-22a. Other criteria are possible that can 

P Q R S 

(a) 

(c) 

P Q R S 

      

   

 

 

 

(b) 

P Q R S 
   

PS
⊕  

PR
⊕  

QS
⊕  
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optimize the performance of the process architecture for a particular 
target platform. This is not further discussed in this thesis. The user can 
overwrite any criterion by specifying interrelationships between 
compositional undefined processes (section 3.7.3). 

The previous parallel operator can be described by one of the three kinds 
of parallel operators in CSP. The alphabets of processes are used to 
specify the exact parallel process. 

The three parallel operators are: 

• Alphabetized parallel X YP Q   
P is allowed to communicate in the set X and Q is allowed to 
communicate in the set Y. They must agree on events in the 
intersectionX Y∩ . 

• Interleaving |||P Q   
P and Q run completely independent of each other. They do not 
synchronize with each other. In the graphical modelling 
language this implies that there is no channel or barrier 
interrelationship between them. 

• Generalized parallel 
Z

P Q   

This is the process where all events in Z must be synchronized 
and events outside Z can proceed independently. This operator 
is a hybrid of an alphabetized parallel process and an 
interleaving process. 

Alphabets are subordinate to the design and alphabets can be 
determined by the design tool once the design is completed. The design 
tool can determine the exact parallel operator and the hiding of internal 
communication events. 

Unequally-prioritized parallel relationships 

An unequally-prioritized parallel relationship (PRIPAR) between 
processes P and Q is denoted by label ‘ ’. This parallel composition is 
written as P Q. If process P is waiting to engage in a communication 



3.6 Compositional relationships 

 

83 

event then it will behave as Q otherwise this parallel composition 
behaves as P. In other words, process P is executed with higher priority 
than process Q. This process terminates when all participating processes 
terminate. 

The unequally-prioritized parallel relationship between P and Q is 
depicted in Figure 3-23. This relationship is written as (P,Q, ). 

 

Figure 3-23 Unequally-prioritized parallel relationship. 

The multiple relationship (P,Q,R,S, ) represents P Q R S, see Figure 
3-24a. There is no ambiguity involved, since all directed operators point 
in the same direction. This is similar as for the sequential operator. 
Therefore, the unspecified relationships can be uniquely derived from 
the specified relationships. See Figure 3-24b.  

 

Figure 3-24 (a) PRIPAR construct, 
(b) over-specified PRIPAR construct. 

An unequally-prioritized parallel composition of n process is written as 

( )0 1

0.. 1

,..., ,n i

i n

P P P−

= −

=  

P Q R S 

(a) 

(b) 

P Q R S 

   

   

 

 

 

 P Q 
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This form allows immediate transformation to unequally-prioritized 
parallel code-constructs. 

3.6.4 Alternative relationships 

Equally-prioritized alternative relationships 

An equally-prioritized alternative relationship (ALT) between processes 
P and Q is denoted by label ‘ ’. See Figure 3-25. This operator is called 
the external choice in CSP. This alternative composition is written as P Q. 
This process will behave as P if P can engage in a communication event 
or it behaves as Q if Q can engage in a communication event. If both 
processes can engage in a communication event then the alternative 
construct will choose one arbitrarily. The alternative process terminates 
when the selected guarded process terminates. 

In this thesis a fair choice, based on a fair priority policy, is preferred. 
This is discussed in Chapters 4 and 5. 

The equally-prioritized alternative relationship between P and Q. is 
depicted in Figure 3-25. This notation is also written as relationship 
(P,Q, ). 

 

Figure 3-25 Equally-prioritized Alternative relationship. 

A guard expression to each process in the alternative relationship is 
required that explicitly expresses a selection criterion that is taken. These 
processes are called guarded processes. A guard expression is depicted as a 
guard body and contains the format event [cond] action. This guard 
body is depicted next to the guarded process with a thin line connecting 

 

eventP [condP] actionP eventQ [condQ] actionQ 

P Q 
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each other. This guard body is used to create an automaton, which was 
discussed in Section 3.6.1. Figure 3-25 depicts the expression  

( )( )( ) ( )( )( )& ; ' & ; 'P P P Q Q Qcond action event P cond action event Q→ →  

where ( )'PP event P= →  and ( )'QQ event Q= → . P and Q are the guarded 
processes that must engage respectively in eventP and eventQ. as their first 
event. The action bodies actionP and actionQ must not engage in any event. 

A guarded process has only one guard body attached to it. If the Boolean 
expression cond is true and the guarded process can engage in event then 
the choice operator may select the guarded process. If cond is false then 
event will be omitted and the guarded process will not be selected. Once 
the guarded process is selected then action will be executed prior to the 
guarded process is executed. 

A variety of guard expressions is shown in Table 3-1. 

channel unconditional channel-input or channel-output 
guarded process 

channel [cond] conditional channel-input or channel-output 
guarded process 

callchannel.method unconditional channel-call or channel-accept 
guarded process on specified method 

callchannel.method [cond] conditional channel-call or channel-accept 
guarded process on specified method 

callchannel unconditional channel-accept guarded process 
on any method 

callchannel [cond] conditional channel-accept guarded process on 
any method 

skip unconditional skip guarded process 

skip [cond] conditional skip guarded process 

else unconditional else guarded process 

else [cond] conditional else guarded process 

timeout(t) unconditional timeout guarded process 

timeout(t) [cond] conditional timeout guarded process 

Table 3-1 Variety of guard expressions. 
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Here, event indicates a channel-input guard, channel-accept guard, channel-
output guard, channel-call guard, skip guard, an else guard, or a timeout 
guard. After each guard expression an action body can be specified that 
updates the state invariants. 

The words channel and callchannel should be replaced by a channel 
name. The word cond represents a Boolean expression (or condition) and 
method should be replaced with the actual method name. The names skip, 
else, and timeout are special keywords and t represents the specified 
time. The channel-calls may require additional arguments in order to 
express the variables that are involved in communication. A distinction 
between channel-input and channel-output or between channel-accept 
and channel-call is rendered by respectively the arrow entering or 
leaving the guarded process. Optionally, symbol ‘?’ or ‘!’ can be 
appended to the event name in order to render the direction in the guard 
expression; channel-input and channel-accept use symbol ‘?’, and 
channel-output and channel-call use symbol ‘!‘. 

A skip guard does not require a channel-input or channel-output and the 
guard is ready all the time. An else guard cannot be found in CSP but it is 
like a skip guard with the difference that it will be selected if no other 
guard is ready. The else guard can be modelled as a skip guard in an 
unequally-prioritized alternative construction. See Figure 3-26. The 
unequally-prioritized alternative operator is discussed in the next sub-
section. 

 

Figure 3-26 Else guarded construct. 

The guard is said to be unconditional when cond is always true (or not 
specified) and the guard is said to be conditional when cond is some 
Boolean expression. 

⇔  P Q P Q 

eventP [condP] 
actionP 

eventP [condP] 
actionP 

else [condQ] 
actionQ 

skip [condQ] 
actionQ 
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A timeout-guard becomes ready when the specified time expires. The 
timeout is relative to the beginning of the execution of the alternative 
relationship. 

Guards can be applied to any-to-any channels but not to barrier 
configurations. It is important to notice that a channel-input guard and a 
channel-output guard, using the same channel and specified (at different 
processes) in the same alternative relationship will never commit in 
communication (Jones, 1987). All guards sharing the same alternative 
relationship must be disjoint in such a way that no pair of channel-input 
guards and channel-output guards can become simultaneously ready. 
This guideline prevents unwanted race conditions. 

The composition (P,Q,R,S, ) represents a path of relationships. See 
Figure 3-27a. Since each process specifies a separate guard, the criterion 
here is that the unspecified relationships may also be a choice operator. 
See Figure 3-27b, whereby  

, , { , , , , , , , , , }
PR PS QS
⊕ ⊕ ⊕∈ → ← Δ Δ  

The criterion that specifies that Figure 3-27a implies Figure 3-27c will 
simplify the understanding of Figure 3-27a. In this case, (P,Q,R,S, ) is 
written as P Q R S or one can write 

( )0 1
0.. 1

,..., ,n i
i n

P P P−
= −

=  

Operator  is symmetrical and thus the processes P0…Pn-1 are randomly 
ordered. 

In case the guards specify a conditional expression cond, one can write 

( ) ( )0 1
0.. 1

,..., , &n i i
i n

P P cond P−
= −

=  
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Process Pi will be omitted when its conditional expression condi is false. 

  

Figure 3-27 (a) ambiguous ALT construct, 
(b) unambiguous ALT construct, 
(c) completely specified ALT construct. 

Unequally-prioritized alternative relationships 

An unequally-prioritized alternative relationship (PRIALT) between 
processes P and Q is denoted by the label ‘ ’. This prioritized alternative 
composition is written as P Q. This process is almost similar to the 
alternative relationship, except that when both processes can engage in a 
communication event, process P will be chosen in preference of Q. 

The unequally-prioritized alternative relationship between P and Q is 
depicted in Figure 3-28. This notation is written as relationship (P,Q, ). 

P Q R S 

(a) 

(c) 

P Q R S 

   

   

 

 

 

(b) 

P Q R S 
   

PS
⊕  

PR
⊕  

QS
⊕  



3.6 Compositional relationships 

 

89 

 

Figure 3-28 Unequally-prioritized alternative relationship. 

A multiple relationship (P,Q,R,S, ) represents P Q R S. See Figure 
3-29a. Since ‘ ’ is a directed operator and pointing in the same direction 
along the path, this means that Figure 3-29a implies 3-29b. 

 

Figure 3-29 (a) PRIALT construct, 
(b) over-specified PRIALT construct. 

In case of a multiple relationship we can write  

( ) ( ) ( ) ( )( ), , , , , , , , , , , , ,P Q R S P Q Q R R S P Q R S= ⇔  

In the graph this expression is the longest path P to S. The importance of 
this form is that we can index processes in the compositional construct so 
that processes are successively ordered and with declining guard 
priorities. 

One can write 

( ) ( )0 1
0.. 1

,..., , &n i i
i n

P P cond P−
= −

=  

P Q R S 

(a) 

(b) 

P Q R S 

   

   

 

 

 

P Q 
 

eventP [condP] actionP eventQ [condQ] actionQ 
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This form allows immediate transformation to unequally-prioritized 
alternative code-constructs. 

3.6.5 Exception relationships 

An exception relationship (EXC) between processes P and Q is denoted 
by the label ’Δ ’. This exception composition is written as P Δ Q. This 
process behaves as Q when P unsuccessfully terminates; otherwise it 
behaves as P. If P successfully terminates then Q will be omitted. This 
process is depicted in Figure 3-30. 

 

Figure 3-30 Exception relationship. 

This exception operator is not formally defined in CSP. The exception 
operator is a new operator that is defined in Appendix C. It originates 
from the interrupt operator P Δi Q in CSP. This process behaves like P 
until Q can engage in event i at which point it behaves as Q. Q is initially 
awaiting for some event i from its environment. If P successfully 
terminates then Q will be ignored. The exception operator is a simplified 
version of the interrupt operator whereby event i is represented as an 
internal event. This internal event is generated by channels, barriers, or 
instructions that are in exception; e.g. error in hardware, disconnected 
link, or division by zero. Process Q is the exception handling process, 
called the exception handler. 

Here, P Δ Q and P Δi Q are both directed interrupt relations between P 
and Q, but only P Δ Q is directional commutative. The directional 
commutative property provides topographical modelling freedom. 
Consider the differences: 

Δ ≠ Δi iP Q Q P  

Δ = ΔP Q Q P  

P Q 
Δ  
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The Δi  operator requires preemption on event i which needs a 
sophisticated construct like the prioritized parallel construct. On 
exception, the Δi  operator requires that process P releases all the 
channels and barriers, on which it or its child processes are blocked, in 
order to prevent deadlocks. Instead, the Δ  operator can be implemented 
with try-and-catch clauses as found in Java and C++. The Δ  operator can 
be implemented with a setjump/longjump construct in C and assembler. 
The compositional relationships must collect and pass exception objects 
further on. Furthermore, the inclusion of exception operator does not 
change the semantics of the other CSP operators. 

The P Δ Q construct passes objects on exception to the exception handling 
processes. The objects embrace the exception type. If an exception is 
‘thrown’ in P then this indicates an exceptional state in P. P returns 
immediately with the exception object indicating the type of the 
exception that was raised. A process may also return a collection of 
exception objects that were raised in its child processes. The exception 
collection being not empty indicates that the process has terminated 
unsuccessfully. An empty exception collection indicates successful 
termination. This distinction between successful and unsuccessful 
termination does not affect the semantics of the original CSP operators. 
Computations or primitive communication processes (see Section 3.6.8) 
convey points in the model where exceptions can rise. Thus, channels, 
barriers, and instructions are entry points for exceptions. Channels and 
barriers that are in exception, release their synchronization and throw 
exceptions at both sides of the communication. Therefore, erroneous 
channels or barriers cannot lock processes forever. 

In design, exception handling can be composed with multiple 
(redundant) exception relationships. See Figure 3-31. 
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Figure 3-31 (a) EXC construct, 
(b) over-specified EXC construct. 

Multiple exception relationships are possible in a relaxed form where no 
set of exceptions are yet specified. If an exception is thrown in P then this 
exception may be caught by Q, R, or S. The exception handlers specify 
which exceptions that they can handle. Those exceptions that are not 
handled by an exception handler are delegated to the next exception 
handler until the exception is handled. This is detailed in Section 4.6.4. 

3.6.6 Anonymous repetitions 

As with many programming languages, this graphical language supports 
imperative repetition. Repetition in CSP is in a declarative style, called 
recursion. Recursion is a process with a function P=F(P), which involves P 
like in P=N;P. Function F is any CSP term. This kind of recursion is 
‘named’ and involves recursive hierarchies. This complicates imperative 
extensions. The recursion is also defined as a ‘nameless’ fixed-point 
recursion . ( )X F Xμ  (μ is a Greek letter ‘mu’), which does not involve 
recursive hierarchies. This recursive process is a repetition involving X, as 
in 

( ). ; ; ; ; ;...X P X P P P Pμ =  

P Q R S 

(a) 

(b) 

P Q R S 

Δ  Δ  Δ  

Δ  

Δ  Δ  Δ  

Δ  
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This represents a process with a fixed point at which the traces of events 
maps to itself. For example, P a SKIP= →  identifies the function Xμ  with 
the sets of traces 

{ }na n∈  

Another type of repetition that is mentioned by Roscoe (1998) is P*, 
which performs P in an infinite sequence. This repetition is not very 
useful in practice, since no escape is possible. With Xμ  one can escape 
from the repetition with the help of if-then-else; e.g. 

( ). ;X P X cond SKIPμ  repeats P and terminates when cond becomes 
false. This allows for an imperative approach by which the if-then-else 
clause is part of an automaton. In an imperative language, this kind of 
repetition is called a loop. Therefore, the graphical modelling language 
incorporates Xμ , which is called a loop process. In Hilderink (2002), the 
loop process was labelled ‘μ‘. This symbol is often used in mathematics 
for all kind of things, such as micro = 610− . We choose a different symbol 
‘ ’ (pronounced as ‘loop’), which is more convenient to represent a loop. 

A  loop process that repeats process P until expression cond is false, is 
illustrated in Figure 3-32. 

 

Figure 3-32 Infinite recursion. 

The loop process is a special primitive process that embraces only one 
compositional relationship with one associated process. The loop process 
will always repeatedly execute the associated process until its conditional 
expression becomes false. The conditional expression is depicted as a 
guard label, which is evaluated in the order that is specified by the 
compositional relationship. The loop process terminates when the 
associated process terminates and the conditional expression is false. 

P  

[cond] 
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Common kinds of loop constructs can be specified, as illustrated in 
Figure 3-33. These loop constructs can be realized in many programming 
languages. In the examples, the action bodies attached to the processes 
specify an automaton involving the loop process. The last example shows 
a repetition construct. 

 

DO-WHILE construct: 

   int i = 0; 

   do { i++; P; } while (i<10);    

FOR construct: 

   for (int i=0; i<10; i++) { P; } 

or 

   int i=0; 

   while (i<10) { i++; P; }      

Repetition construct: 

   P(0)  P(1)  P(2) 

                  

Figure 3-33 Examples of different kind of loop constructs. 

Variable labels are depicted as floating port labels that are not part of the 
process interface. Figure 3-34a shows a loop process with variable labels 
x and y. 

Since these variables are declared within the scope of the parent process, 
the loop process can use these variables in its guard body. Guard bodies 
may not always clearly show the data dependencies in the process 
architecture. It is possible to show the data dependencies between the 
loop process and the variable labels by using open arrows. Figure 3-34b 

 

[i<3] i++  i=0:int 

   
P 

 

[i<10] i++ 

i=0:int 

P 

 

[i<10] 

i=0:int 

i++ 

P 
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illustrates this. Only primitive data types are accepted by the guards of 
loop processes. 

 

Figure 3-34 Two equal loop processes: 
(a) without showing data dependencies, 
(b) showing data dependencies. 

3.6.7 Aliases 

An alias is another name for the same thing. Multiple floating labels with 
different names can be part of the same relationship. These are aliases 
which names are dedicated to their specification context. This can 
improve the readability of the CSP diagram. An alias can be depicted in 
CSP diagrams using a line between two floating labels of the same type. 
See the examples in Figure 3-35. 

 

Figure 3-35 Examples of aliasing: 
(a) channel communication 
(b) barrier communication 
(c) state communication. 

bar1 
:Barrier 

bar2 
:Barrier 

P 

Q 

x:int y:int 

P 

Q 

memo 
:Document 

letter 
:Document 

P 

Q 

 

[x>10] y++  

x:int y:int  

[x>10] y++  

x:int y:int 

(a) (b) 
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In Figure 3-35a, messages are passed via the channel memo and letter. In 
Figure 3-35b a barrier communication is extended via bar1 and bar2. In 
Figure 3-35c, the variable x is the same as y. When x is updated then y is 
updated as well, visa versa. In this example, a value from P is passed to 
Q via x and y after P has terminated and before Q is executed. 

In a flat hierarchy, the alias labels must be ports in the process they are 
declared. Arrows are used in a deep hierarchy design. Flat and deep 
hierarchies are discussed in Section 3.7. The line can also have an 
identifier label on top of the line, which is another alias. 

3.6.8 Primitive communication processes 

This section introduces three special processes that express 
synchronization points in the CSP diagram. These special processes are 
called primitive communication processes. 

Data channel, input and output 

The primitive communication processes for data channel communication 
are depicted in Figure 3-36. Figure 3-36a shows channel input. The 
process reads from channel c and outputs the data to variable x. Figure 
3-36b shows channel output. The process writes the content of y to 
channel c. 

 

Figure 3-36 Primitive communication processes on data channels: 
(a) data channel input, i.e. channel to variable, 
(b) data channel output, i.e. variable to channel. 

! 

(b) 

c:int y:int 

channel variable 

? 

(a) 

x:int c:int 

variable channel 
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Call channel, call and accept 

The primitive communication processes for call channel communication 
are depicted in Figure 3-37. The method that is involved is a choice or 
element of the service type. The method is specified in a guard body. 
Figure 3-37a shows the acceptance of any method on channel c that 
Figure 3-37b illustrates the acceptance of a particular method, namely 
method on(). The method on() is an element of OnOff. Figure 3-37c 
depicts a request of the method on() on channel c. 

 

Figure 3-37 Primitive communication processes on call channels: 
(a) server side accepts any method, 
(b) server side accepts only method on(), 
(c) client requests method on() on call channel. 

The keywords call and accept in the action bodies, as illustrated in 
Figure 3-37, specify the behaviour of the primitive communication 
processes. The keyword accept without a specified method implies that 
any request will be accepted. 

Barrier, sync 

The primitive communication process for barrier communication is 
depicted in Figure 3-38. This example synchronizes on barrier b. 

 

Figure 3-38 Primitive communication processes on call channels. 

* b:Barrier 

 

? 

(a) 

c:OnOff ! 

(c) 

c:OnOff 

call on() 

? 

(b) 

c:OnOff 

accept on 
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Examples 

Examples of communication are given in Figure 3-39. Figure 3-39a shows 
communication via a data channel. Figure 3-39b illustrates a request for 
method func() via a call channel. One can specify arguments and a return 
value as shown in the example. Figure 3-39c shows barrier 
communication on which the variables x, y, and z depend. 

Multipurpose primitives 

These primitive communication processes are useful for 

• showing the points of interaction between processes, 

• transformation between channels and local variables, 

• showing hardware access points (Hilderink et al., 1998), 

• checking for deadlocks in design, 

• checking for priority inversion problems in design, 

• throwing exceptions on internal errors. 

Sharing objects 

Objects can be passed via a channel or barrier by the methods pass-by-
value or pass-by-reference. These mechanisms are discussed in Appendix 
H. Pass-by-reference may improve performance on large objects on 
shared memory systems. This requires secure handling to avoid that no 
more than one process can access the shared object at the same time. 
Primitive data types do not suffer from this problem since pass-by-value 
is used, which is instinctively secure. Sharing objects is more restricted 
than sharing primitive data types. The rules in Section 3.8.1 also apply 
for objects. 
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Figure 3-39 Examples of communication relationships between 
channels, barriers, state variables, and input and 
output processes: 
(a) data channel communication: len = size, 
(b) call channel communication: z = func(x,y), 
(c) barrier communication: z=x, y=w. 

 

Figure 3-40 Output process and state handling: 
(a) pass reference of obj via channel c; obj must not be 
used after output, 
(b) pass reference of obj via channel c and return a 
clone of obj; obj can be safely used after output. 

! 

(a) 

c:Object obj:Object 

channel object 

! 

(b) 

c:Object obj:Object 

channel object 

! ? 
length:int 

size:int len:int 

 

! ? 
chan:MyService x:int 

z:boolean  

y:int 

accept call 

write read 

(a) 

(b) 

call z=func(x,y) accept func 

k:int 

* * 

 

sync sync 

  

(c) 

boolean func(int x, int y) 

{ 

  ... 

  k = x; 

  ... 

  return k; 

} 

x:float 

y:int 

z:float 

w:int 
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Figure 3-40a shows an output process that sends an object obj via a 
channel c. The reference of the object or its content is passed on. One 
cannot tell in advance which mechanism will be used at this side of the 
channel. Therefore, obj must not be used after the output, since its 
ownership may be released and claimed by another parallel processes. 

Figure 3-40b shows an output process with a two-way open arrow. This 
implies that obj will be valid after output. In case pass-by-value is used, 
the original object is returned. In case pass-by-reference is used, a clone 
of the original object is returned. This allows other sequential processes 
to safely share obj. 

Reading obj in parallel is not allowed, as illustrated in Figure 3-41a, since 
no guarantee can be given that pass-by-value is used. The ownership of 
the object can be passed on. A null-pointer may be the result, which will 
cause a null-pointer exception on use after the reference of the object was 
send. In Figure 3-41b the problem is solved by a two-way arrow between 
the first output processes and obj. The second output may safely use obj. 
After the second output, obj may not be used anymore, unless a two-way 
open arrow is used. 

 

Figure 3-41 Example of parallel output using the same object: 
(a) illegal since second output may suffer from a 
nullpointer exception, 
(b) illegal since second output uses a reused or cloned 
object 

Channel communication contributes to a secure memory management 
concerning objects. Open arrows can be used such that the choice 

! 

(a) unsafe 

c:Object 

obj:Object 

channel object 

! d:Object 

! 

(b) safe 

c:Object 

obj:Object 

channel object 

! d:Object 
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between pass-by-value and pass-by-reference is made. This is useful for 
optimizing the communication within the process architecture. 

 

Figure 3-42 Four different open arrow configurations between objects and 
input or output processes; 
(a) pass-by-reference is enforced, 
(b) pass-by-reference is enforced and a clone is returned at the 
writer side, 
(c) pass-by-value is preferred; in case the object cannot be copied 
then pass-by-reference is used, 
(d) pass-by-value is preferred; in case the object cannot be copied 
then a clone is returned at the writer side. 

Figure 3-42 shows four configurations and each configuration has its 
properties. Figure 3-42a passes the references from producer to 
consumer. Figure 3-42b is similar, but it returns a clone of obj1 so that the 
next process can use obj1 without explicitly creating a new object. Figure 
3-42c illustrates a configuration that can pass the content of obj1 to obj2, 
since obj2 can be reused. In case no pass-by-value can be used, pass-by-
reference is used instead. Since the choice is uncertain, the producer may 
not use obj1 after output. Figure 3-42d depicts a configuration by which 
pass-by-value is preferred. Object obj1 may be used after the output. In 

! obj1:Object ? obj2:Object 
chan:Object 

! obj1:Object ? obj2:Object 
chan:Object 

! obj1:Object ? obj2:Object 
chan:Object 

! obj1:Object ? obj2:Object 
chan:Object 

(a) 

(b) 

(c) 

(d) 



 3. Graphical Modelling Language for Specifying Concurrency based on CSP 

 

102

case a reference is send then a clone is returned to the producer. This is 
similar with call channels and barriers. 

3.7 Hierarchies 

3.7.1 Ambiguity and Unambiguity 

A CSP diagram is ambiguous when it describes more than one algebraic 
expression. The ambiguity is caused by unspecified compositional 
relationships for which the operator can be a choice of one out of more 
possibilities. 

Consider a model with three processes P, Q and R as shown in Figure 
3-43. In this example, the user specifies that process P should be executed 
before Q and Q should be executed in parallel with R. The behaviour 
between P and R is not specified by the user and leaves open certain 
ambiguity. This means that there is more than one valid solution and any 
of these solutions is accepted.  

 

Figure 3-43 Example of a model with ambiguity. 

Here, the valid solutions are P;(Q R) and (P;Q) R. Every solution should 
satisfy the requirements. If a solution exists that does not satisfy the 
requirements then further refinement steps are necessary in order to 
exclude the invalid solution from the set of solutions. 

Ambiguity can be avoided by a complete graph or by using hierarchies 
of processes. A complete graph is a diagram for which all 
interrelationships between all processes are user-specified or uniquely 
derivable. A complete graph can be transformed into a hierarchical 
diagram and visa versa. A hierarchical diagram simplifies a complete 
graph. 

 
P Q R 
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The graphical modelling language supports hierarchies in three different 
ways: 

• Deep hierarchical modelling abstracts away detail by describing 
different levels of processes. This approach simplifies a design 
by hiding detail, which is based in depth browsing. 

• Flat hierarchical modelling shows the insight of processes in one 
model in order to understanding the behaviour of a protocol of 
interaction. This is based on using parenthesis, which is based 
on flat browsing. 

• Mixture of deep and flat hierarchical modelling shows the best of 
both. 

In any of these hierarchical modelling approaches one can model a 
complete graph at a particular level in the hierarchy. Complete graph 
modelling does not directly specify hierarchies, but it gives rise to 
anonymous compositional hierarchies during implementation. 

Solutions can be depicted by nested hierarchical processes as illustrated 
in Figure 3-44a and 3-44b. This deep hierarchy is depicted here in 
transparent rectangles in order to illustrate the hierarchy and the 
relationships between the processes in one diagram. In general, 
transparent rectangles are notation unfriendly. They can easily occupy an 
unnecessary amount of space in a diagram. Instead a flat hierarchy 
should be designed using parenthesizing symbols, which is shown later 
in this section. 

 

Figure 3-44 Unambiguous solution using deep hierarchies: 
(a) ( );P Q R  
(b) ( );P Q R  

 
 P 

Q R 

 

P Q 
R 

(a) solution 1 (b) solution 2  
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A unique and unambiguous solution can be achieved by specifying a 
relationship between P and R, as shown in Figure 3-45. This is a complete 
graph. Each step towards a complete graph eliminates ambiguous 
interpretations. 

 

Figure 3-45 Unambiguous solutions by complete graph modelling: 
(a) ( );P Q R  
(b) ( );P Q R  

This way, unambiguous compositions require many relationships to 
specify a unique solution. All these lines would make the model complex 
and likely unreadable. In order to keep the model simple, we introduce 
the parenthesis symbol on compositional relationships. See Figure 3-46. 
This is represented by an open dot ‘ ’ (concatenation of ‘(‘ and ‘)’ ) at the 
peer-end of the compositional relationship. In these examples, Figure 
3-44a is equal to 3-45a and  3-46a. Figure 3-44b is equal to 3-45b and 
3-46b. Using parenthesis symbols minimizes the number of relationships. 
The parenthesis symbol can represent an anonymous process whereby its 
identifier is unspecified by the user. An unspecified identifier is hidden 
by default. 

 

Figure 3-46 Unambiguous solutions using parenthesizing 
relationships: 
(a) ( );P Q R  
(b) ( );P Q R  

(b) solution 2 (a) solution 1 
    

P Q R P Q R 
      

(b) solution 2 (a) solution 1 

P Q R P Q R 
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A compositional relationship with an open dot at one end or both ends 
becomes a directed relationship. This is a parenthesizing relationship. A 
process to which the open dot is connected belongs to a parenthesized 
relationship. 

3.7.2 Indexed parenthesizing relationships 

A dot in the parenthesizing relationships can be indexed with a value 
greater than zero, i.e. \{0}i +∈  (only positive natural numbers without 
0). The index is an instrument useful for determining the levels in 
hierarchy. Its value can be altered by an algorithm that allows for 
reallocating relationships in a CSP diagram while maintaining its 
hierarchy and its algebraic expression. This is discussed in Section 3.8.2. 

For example, see Figure 3-46. Indexes greater than 1 should be rendered 
next to the dot to indicate the index. A dot with no index implicitly 
means that it has index 1. A zero-order relationship has index 0, which 
implies no parenthesis symbol. A parenthesizing relationship with index 
1 is said to be a first-order relationship, index 2 is a second-order 
relationship, etc. 

 

Figure 3-47 Indexed parenthesizing relationship with index i. 

Figure 3-47 illustrates indexed parenthesizing relationships for 
describing more complex compositions or algebraic expressions using a 
minimal number ( )1n −  of interrelationships, with n processes. A model 
is usually analyzed or read starting at the first-order relationships 
towards second-order relationships. A systematic method is discussed in 
Section 3.7.4 that allows the user to brows (or read) the hierarchy by 
stepping from zero-order relationships to higher-order relationships. 

2 
P Q R T 

1  

( )( ); ;P T Q R
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3.7.3 Compositional undefined relationships 

In reality and virtually, all processes are compositionally related to each 
other. The compositional interrelationships that are specified by the user 
are visual in the CSP diagram. The user-unspecified interrelationships 
are hidden and they are internally determined by the tool. A CSP 
diagram that is conflict-free results always in a computational model. A 
process that is not connected by user-specified interrelationships is called 
compositional undefined. A compositional undefined process has no 
neighbours in the visual view. Compositional undefined processes can be 
executed in any order, i.e. in parallel or in some sequence. The behaviour 
also depends on communication, as specified by the communication 
diagram. This is in compliance with the computational models of block 
diagrams. Block diagrams are like CSP diagrams without user-specified 
compositional relationships. 

By not specifying connections, we mean that we do not care what the 
execution order is and therefore we let the design tool decide. The 
criterion that is applied here is an internal choice between (equally- or 
unequally-prioritized) parallel and sequential operators. The choice 
could be influenced by the communication relationships between the 
compositional undefined processes. The choice of the hidden operator 
must be valid, i.e. each solution must be compositional conflict-free 
(Section 3.8.4). Hidden interrelationships can be visualized (e.g. using 
transparent lines) to show to the user which operator has been chosen by 
the tool. Hidden interrelationships can also be parenthesizing in order to 
simplify the view. See Figure 3-48 where operator { , , , , }⊕∈ → ← . 

 

Figure 3-48 Undefined relationship between two processes: 
(a) compositional undefined processes, 
(b) choice of operator and interrelationship visualized. 

(a) (b) 

⇒  
i j 

P Q P Q 
⊕   
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The graphical modelling language allows us to express the detail of the 
execution framework. The ability of visualizing the hidden relationships 
is an ultimate solution for debugging and studying the behaviour of the 
model at design level. 

Compositional undefined processes can be connected by a zero-order 
interrelationship without an operator in order to group these processes. 
See Figure 3-49. This is useful when the group is being parenthesized. 
Again, the operator of an undefined interrelationship can be determined 
by the design tool. 

 

Figure 3-49 A grouped undefined relationship. 

3.7.4 Deep hierarchies versus flat hierarchies 

A process can contain other processes. Therefore, a CSP diagram can 
contain hierarchies of sub-diagrams. A sub-diagram is a process that is 
again described by a communication diagram and a composition 
diagram. The scope of a sub-diagram is determined by its parent process. 
In CSP diagrams, nested hierarchies are created by deep hierarchical 
modelling (encapsulation and hiding), by flat hierarchical (encapsulation 
but not hiding) modelling, or a mixture of the both. See Section 3.7.1. 

Although deep hierarchical modelling simplifies a design by hiding 
detail, it may make the understanding of behaviour complicated when it 
involves processes at deeper levels in the hierarchy. Flat hierarchical 
modelling solves this problem, but a flat hierarchy may complicate the 
design by offering too much detail. However, in a flat hierarchy any 
process and relationship that is irrelevant for describing a protocol of 
communication can be hidden from the view. This is called compression. 
Compression is useful for describing the behaviour of processes as 
observed via their process interfaces. 

P Q 
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The user can apply a suitable mix of deep and flat hierarchical modelling. 
A straightforward transformation between deep and flat hierarchies 
exists that can assist the user in determining an appropriate view for 
analyzing a particular specification or behaviour.  

Techniques are available that allow the user or the tool to transform a 
deep hierarchy into a flat hierarchy and visa versa. These techniques can 
also be applied to mixed (deep/flat) hierarchies. Any transformation 
results in the same computational expression with differences in 
transparency. The transformation from a deep hierarchy to a flat 
hierarchy starts with selecting one sub-process in the sub-diagram that 
has only outgoing parenthesizing and/or zero-order relationships. If 
such a sub-process is found then the process is connected with a 
parenthesizing relationship with index 1 to that sub-process. For example 
in Figure 3-50a, such a sub-process is R in parent process Q. The parent 
process can be transformed from a rectangle to a parenthesizing symbol 
of the newly created relationship. This is illustrated in Figure 3-50b. The 
parenthesizing symbol inherits the parent process identifier. Eventually, 
the reallocation rules can be used to reallocate the relationship to other 
sub-processes in Q. See the reallocation rules Section 3.8.2. Illegal 
indexes, i.e. index < 1, occur when a wrong starting process was selected 
that has an incoming parenthesizing relationship. If reallocation rules are 
applied correctly then the indexes do not change the computational 
expression. This procedure can be repeated until the deep hierarchy has 
been transformed to a flat hierarchy. 

 

Figure 3-50 Example of flattening hierarchy: 
(a) P related to Q (Q is transparent), 
(b) P related to the processes in Q. 
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The reverse procedure is also interesting. The reverse procedure can be 
used to determine design conflicts in more complex designs. A group of 
processes connected with zero-order relationships forms a hierarchy by 
default. For example, the processes S and T in Figure 3-51a are merged 
into a new process which is identified as ST. See Figure 3-51b. The 
relationships are reconnected to the anonymous process and the index 
between R and ST must be decremented by 1. This procedure can be 
continued until a single process and only zero-order relationships 
remain. See Figure 3-51c. 

 

Figure 3-51 Example: creating deep hierarchies: 
(a) P is related to all processes in a flat hierarchy, 
(b) merging first-order relationships first, 
(c) complete deep hierarchy. 
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The relationships (R,ST, ⊕ ) and (R,U, ⊕ ) in Figure 3-51b can be merged 
only if both relationships have the same operator, i.e. one relationship is 
redundant. If these relationships have different operators then these 
operators are in conflict and the model has an error. This procedure 
allows checking the model for compositional conflicts. We assume that 
these operators are the same. The relationship between P and ST can be 
removed due to redundancy. This procedure ends until a single process 
is the result and all parenthesized symbols have been eliminated. See 
Figure 3-51c. 

Identifier prefixing 

Relationships and identities in a CSP diagram must not disappear on 
translating a deep hierarchy into a flat hierarchy. Also the translation of a 
flat hierarchy into a deep hierarchy must not create new information. 

The names of ports are unique in the process they are defined. However, 
these names can be the same between processes. This is not a problem in 
a deep hierarchy, but it may conflict on a flat hierarchy. The solution is to 
distinguish the names in a flat hierarchy. 

An identifier label can be prefixed with the process name to which it 
belongs. Therefore, an identifier label can have the following format: 

process.id:Type 

Here, process is optionally used to distinguish ids with the same name 
from different processes. In a flat hierarchy, process can contain other 
prefixes separated by ‘.’. In case the entire name becomes too large due to 
many prefixes, a word wrap can be used after ‘.’ and the name is 
depicted by multiple lines. 

In the following example are the operators on the compositional 
relationships omitted. 

Figure 3-52 shows a transparent CSP diagram using a deep hierarchy of 
processes. The independent variables i are used in the processes p:P, q:Q, 
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r:R, and s:S. Some action bodies increment or decrement i for some 
reason. The meaning of i is not important in this example. 

 

Figure 3-52 Deep hierarchy with equal variable names. 

Applying these translation steps to Figure 3-52 results in Figure 3-53. 
This example demonstrates the result of prefixing floating variable labels 
in order to maintain their locality. 

 

Figure 3-53 Flat hierarchy with prefixed variable names. 

Variable i in process q is named q.i and i in r is named r.i. Since i in 
process p is also nested in q, a double prefixing must be used, namely 
q.p.i. This is similar for i in s, namely r.s.i. The variables in the action 
bodies cannot use prefixes. They do not need prefixes because they are 
attached to a process which is parenthesized. Therefore, action body of 
a:A cannot use a variable in a different process; e.g. it refers to q.p.i but it 
cannot refer to r.s.i. 

Translating a deep hierarchy into a flat hierarch also affects the 
communication diagram. Channels and barriers that are passed via ports 
are aliased with prefixed identifiers. Figure 3-54 shows a merged 
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communication and compositional diagram based on a deep hierarchy as 
in Figure 3-52 (above). 

 

Figure 3-54 Deep hierarchy with equal port names. 

After translation, the result can be depicted in two different ways. Figure 
3-55a shows the result based on aliases that extend the channel. Figure 
3-55b shows the result based on aliases that are separated from the 
channel and these aliases are depicted next to the design. This makes the 
diagram better readable in case the ports are not of immediate concern. 
Hiding the ports in Figure 3-55a results in Figure 3-55b. 

 

Figure 3-55 Flat hierarchy with prefixed variable names. 
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3.8 Analysis techniques and rules 
The graphical modelling language includes rules to avoid illegal designs. 
In this section, analysis techniques are described that apply these rules to 
determine the validity of the process architecture. These analysis 
techniques can be applied by the user or it can be automated by a design 
tool. 

3.8.1 State communication rules 

Simultaneous updating of the same state variable is forbidden. State 
communication must not cause race conditions between reading and 
writing. State variables are allowed to be read in parallel. Figure 3-56 
shows a mixed CSP diagram in which these safety rules are depicted. 
Here, the state variable x is shared by P, Q, R, and S. The safety rules for 
x are expressed by the choice of operators in this general pattern of 
compositional relationships. This pattern scales for more or less 
processes. 

 

Figure 3-56 Rules of using variables safely. 
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Thus, the interrelationships PQ
⊕  and PQRS

⊕  are not allowed to be performed 
in parallel. 

The rules that apply to two-way open arrows are given in Figure 3-57. 

 

Figure 3-57 Rules of sharing an object with two-way open arrows. 

The operators on the compositional interrelationships are restricted to 

{ , , }
PQ

OP⊕ ∈ − , { , , }
RS

OP⊕∈ − , { , , }
PQRS

OP⊕ ∈ −  

The user or design tool must apply these rules to check whether or not 
they are violated. Violation results in an error. It is obvious that parallel 
writing, or parallel writing and reading may cause a race hazard that 
corrupts the data.  

3.8.2 Reallocation rules 

In process architectures, as in CSP diagrams, processes are usually 
located near to the processes with the highest relationship density. This 
should give the user the freedom to move processes around while the 
model grows. The connections between processes are usually kept short 
and crossings should be avoided as much as possible. However, 
reallocating processes can result in longer connections and possibly 
create crossings with other connections. In case a process is related to a 
group of processes, a technique is presented that allows the process to be 
related to the nearest process in the group, while preserving the algebraic 
expression. This technique can significantly shorten the connection or 
eliminate crossings, which make the model better readable. 
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Example 

Figure 3-58a shows a process P that is originally related to process Q, but 
it has been moved to another location in the diagram closer to other 
processes it is related to. These other processes are not shown in this 
figure. The technique presented here shows that the relationship between 
P and Q can be reallocated to a relationship between P and T as 
illustrated in Figure 3-58b. 

 

Figure 3-58 Example of dragging a process in a CSP diagram and 
reallocating its connection: 
(a) moving process P from left to right, 
(b) reallocation its connection by following rules. 

Reallocation rules 

Each reallocation step along a compositional relationship represents an 
index increment, an index decrement, an index increment and 
decrement, or index equality. Figure 3-59a-f show six basic rules for 
reallocating relationships. 

(a) moving process P in CSP diagram 

(b) reallocation of connection 

dragging 

+1 +0 -1 

P P 

Q R S T U 
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Figure 3-59 Reallocation rules. 

The operators above the interrelationships have been omitted because 
they do not really matter for this technique. The operators are assumed to 
be specification conflict-free and they are assumed to satisfy the 
requirements. 

In Figure 3-59 the rules c and f illustrate the boundaries of reallocation. 
Once a relationship is given a parenthesis symbol then its index is 1 or 
higher. Illegal indexing (index < 1) indicates an illegal reallocation in that 
direction and indicates a dead end. In Figure 3-59c and 3-59f, one can see 
that process R is not a member of the group and therefore reallocation 
should not be applied. 

For example, the rules are applied to Figure 3-58a. Each step is illustrated 
in Figure 3-60a-d. The rules cannot be applied when the index becomes 
illegal, as illustrated in Figure 3-60e. 

These reallocation rules provide a systematic method which can be 
automated by the design tool when the user drags a process in the 
diagram for which the tool automatically determines the shortest 
connections. 

1 2 

+1 
(a) increment (b) decrement (c) decrement and 

index < 1 (illegal) 

(d) equality (f) decrement and  
index < 1 (illegal)  

(e) increment and 
decrement 

2 1 

-1 

1 0 

-1 

1 1 

+0 

2 2 

-1   +1 

1 1 

P 

Q R 

P 

Q R 

P 

Q R 

P 

Q R 

P 

Q R 

P 

Q R 

-1   +1 



3.8 Analysis techniques and rules 

 

117 

 

Figure 3-60 Example of reallocating a connection by incremental step. 

Algebraic expression 

Figure 3-60a-d are represented by one algebraic expression for which any 
operator can be applied on the interrelationships. Let ⊕

PQ  be an operator 
between P and Q with ⊕

PQ { , , , , , , , , , }∈ → ← Δ Δ . One can derive the 
following algebraic expression using the compositional analysis rule as 
defined in appendix G. 
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The process Z is an algebraic expressions in compressed form. Ambiguity 
may exist between P and U, and between Q and T. After expanding, the 
complete algebraic expressions is 

( )( )PY QX RS XT YU
P Q R S T U⊕ ⊕ ⊕ ⊕ ⊕  

Any ambiguity is conserved in this algebraic expression. A CSP diagram 
can make ambiguity better observable. The previous algebraic expression 
is depicted in Figure 3-61. 

 

Figure 3-61 Transparent representation of ( )( )PY QX RS XT YU
P Q R S T U⊕ ⊕ ⊕ ⊕ ⊕ . 

Ambiguity can be observed independently for each level in the 
hierarchy. In this example, there are no lines between P and U, or 
between Q and T. These undefined interrelationships can be uniquely 
derived from the operators on the user-defined relationships, or they can 
be determined by the tool. 

3.8.3 Balanced and unbalanced parenthesized 
cycles 

Cycles of parenthesizing relationships in a design should be balanced. 
This means that in a cycle the weight (sum of indexes) of parenthesizing 
relationships pointing in one direction should compensate the weight of 
parenthesizing relationships pointing in the other direction. If these 
parenthesizing relationships do not compensate opposite parenthesizing 
relationships in the cycle then one cannot completely determine the 
algebraic expression of this so-called unbalanced cycle. In an unbalanced 
cycle, the algebraic expression reasoned in one direction is not the same 
as the algebraic expression reasoned in the other direction. 

 
X  

QX
⊕

  
PY
⊕  

R 
P Q 

S 
T 

 
RS
⊕  U 

 
XT
⊕   

YU
⊕  



3.8 Analysis techniques and rules 

 

119 

The following technique can be applied to test whether cycles of 
parenthesizing relationships are balanced or not. This technique allows 
the design tool to give an error when a wrong index was specified. This 
technique can also be used to determine the right index automatically on 
a newly added interrelationship. Figure 3-62 illustrates an example of a 
design (Figure 3-62a) where the user adds an interrelationship which 
creates a cycle (Figure 3-62b). The operators on the interrelationships that 
do not matter to explain the example are omitted from the illustrations. 

 

Figure 3-62 Balancing cycles or determining indexes. 

The procedure of checking or determining the index is as follows. The 
weight of parenthesizing relationships pointing clockwise (see  in the 
example) is 2 and the number of parenthesizes pointing anti-clockwise 
(see  in the example) is 1. After subtraction the result is 2-1=1 whereas 
in a balanced cycle the difference should be 0. In this example, it is not 
difficult to see that the index of the new parenthesizing relationship 
between P and R should be 2. 

As illustrated above, a systematic approach exists that determines the 
index of, for example, a newly added parenthesizing relationship that 
forms a cycle. This technique should be carried out for each cycle. In case 
two connected cycles determine two different indexes for a shared 
relationship then the model has a structural error. This indicates that the 
model needs to be revised. 

Of course, the user can override any automatically generated index with 
a different and valid index on order to specify a different hierarchy. 
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3.8.4 Compositional conflicts 

A compositional conflict is a failure in the design which may cause a 
specification mismatch, deadlock, or a performance bottleneck in the 
process architecture. A compositional conflict is defined as follows: 

Definition (compositional conflict): A compositional conflict is a failure 
formed by two compositional relationships that are in contradiction. 

Three different kinds of compositional conflicts are categorized: 

• Specification conflict. A process architecture that suffers from a 
compositional relationship mismatch between processes cannot 
be code-generated or model-checked because no solution can be 
found. 

• Deadlock conflict. A process architecture that is specification 
conflict-free and suffers from a sequential relationship mismatch 
between communications is a deadlock.  

• Priority conflict. A process architecture that is specification 
conflict-free and suffers from a priority mismatch between 
communications introduces bottlenecks that slow down the 
reactiveness or responsiveness of the process architecture. 

The graphical modelling language is expressive enough to detect these 
compositional conflicts in designs, as is shown below. A systematic 
approach exists for each conflict that is based on a similar technique 
applied to different contexts. 

A process architecture that suffers from a specification conflict requires a 
redesign. A process architecture that suffers from a deadlock conflict or a 
priority conflict may require a redesign or it may require a buffered 
channel to solve the conflict. In some worst-case timing, a priority 
conflict can cause starvation, which can evolve to livelock or deadlock. 
Hence, the user is interested whether or not the process architecture is 
compositional conflict-free. The detection of compositional conflicts in 
process architectures can be automated by the design tool following the 
rules, as described in the following sub-sections. The design tool could 
warn the user if an incorrect operator or a wrong index is applied. 
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Specification analysis 

Specification analysis is the examination of specification conflicts in the 
design. For example, Figure 3-63a shows a diagram with sequential 
relationships; (P,Q,R,→ ). The relationship between P and R can be 
derived from the user-specified path, e.g. (P,R,→ ). During design, the 
user can decide to specify an interrelationship between P and R. See 
Figure 3-63b. The sequential operator causes a compositional conflict. In 
this case (P,R,→ ) and (P,R,← ) are in contradiction. Two or more 
relationships between two processes with different operators, including 
derived interrelationship, are forbidden. Thus, Figure 3-63b suffers from 
a specification conflict. 

 

Figure 3-63 Example of specification conflict:  
(a) derived relationship,  
(b) overriding relationship that is in contradiction. 

Figure 3-63 shows triangular cycles. A triangular cycle is a cycle of three 
processes that are completely connected by compositional 
interrelationships. The compositional analysis rule in Appendix G is 
applied for each triangular cycle in the CSP diagram. Any not conflict-free 
result is a specification conflict. 

Deadlock analysis 

A process architecture that is specification conflict-free may still suffer 
from a deadlock conflict. The deadlock causes the program to stop at 
run-time. Deadlock is a synchronization conflict between rendezvous 
communication and sequential relationships between these 
communications. 

(b) specification conflict (a) ; ;P Q R  

P Q R P Q R 
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Definition (deadlock): A deadlock is a failure of two processes to 
cooperate with each other because of not being able to agree on a 
common event, although they are willing to participate in other events. 

A good solution in finding deadlocks is using formal deadlock checkers. 
For example, a process architecture could be translated into readable CSP 
and analyzed by a tool like FDR (2004). The tool will prove if the design 
is deadlock-free. This is only possible if the process architecture is 
specification conflict-free, but not necessarily deadlock-free. 

During design it would be convenient to detect and to warn about the 
presence of deadlocks before finishing the model. Here, a technique is 
described for finding and for reasoning about deadlocks in the design 
phase of the project. This is based on the conflict-free checking 
techniques involving primitive communication processes. Deadlock can 
be traced in the CSP diagram before run-time or code generation. The 
primitive communication processes play an important role in deadlock 
analysis. 

For example, Figure 3-64a shows a model that is specification conflict-
free but suffers from deadlock. In this case, the communication diagram 
and composition diagram are depicted in one model. Figure 3-64b 
illustrates that this model is specification conflict-free by applying the 
specification analysis technique. The merging of temporal processes, 
being part of the analysis technique, is illustrated with the help of dotted 
rectangles. These dotted rectangles are not part of the CSP diagram. Since 
the model is specification conflict-free, the model can be code generated 
and executed. 

At run-time, the primitive communication processes synchronize on 
channel communication and on barrier synchronization. They maintain 
in a locked state forever, they deadlock. In the procedure of finding 
deadlock conflicts we define a preliminary step that allows us to detect 
these kinds of conflicts. 
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Figure 3-64 Example of deadlock conflict:  
(a) original design, 
(b) specification conflict-free, 
(c) compositional conflict using rendezvous processes. 

Given the fact that channel-ends and barrier-ends always rendezvous 
with each other on communication, this instance of communication 
represents a rendezvous process at run-time. The compositional 
relationships between the primitive communication processes must be 
(equally- or unequally-prioritized) parallel. Visualizing rendezvous 
processes is only used for deadlock analysis. A rendezvous process 
merges both ends of a channel or barrier to one anonymous process. See 
the dotted rectangles in Figure 3-64c. Note that parenthesizing symbols 
are ignored and the design is not altered by this analysis technique. 

For this analysis technique it is useful that the model is flattened. 

1. Merge all pairs of primitive communication processes together 
into rendezvous processes. This is called a scenario. In case 
primitive communication processes are part of an alternative 
relationship, this must be treated as a choice of communication. 
Each choices results in another scenario. Multiple scenarios must 
be analyzed separately. 

2. For each scenario the compositional relationships between the 
rendezvous processes must be checked for sequential conflicts. A 
sequence conflict is a compositional conflict whereby sequential 
relationships are in contradiction. This is based on the same 
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technique as for detecting specification conflicts concerning only 
sequential relationships. This is similar as illustrated in Figure 
3-64. 

Any deadlock in the process architecture can be shown in the design by 
highlighting the paths in, for example, the colour red.  

This analysis technique can incorporate logical decisions, such as 
conditional guards and if-then-else constructs. This may results in a large 
amount of scenarios. The benefit of this technique is that each scenario 
can be checked individually and it does not cause a state explosion in the 
model-checker. This analysis technique is a similar to the deadlock-
checker developed by Martin and Jassim (1997), which is based on a 
graph of states. This technique is used by the model-checker FDR (2004). 
CSP diagrams could be checked by FDR and feedback from FDR can be 
depicted in the diagrams, which shows the user the conflict in the design. 
Anyway this graphical modelling language offers the notation to depict 
deadlock in CSP diagrams. 

Priority inversion analysis 

With a similar technique as described in the previous section one can 
find priority conflicts. Priority conflicts are caused by unequally-
prioritized parallel operators that are in contradiction. 

An example is shown in Figure 3-65. This example suffers from a priority 
conflict between rendezvous processes, which means that the model 
suffers from a priority inversion problem. The priority inversion problem 
can have a significantly burden on the performance of the program. It 
this case, a higher priority process can be blocked by the lower priority 
process and as a result of that it may be likely that the deadlines of the 
higher priority process cannot be met. 
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Figure 3-65  Priority conflict = priority inversion problem. 

Usually, eliminating priority conflicts by correcting unequally-prioritized 
compositional relationships will result in a better design. In case where 
priority inversion is inevitable in the design, which is possible, one could 
solve the problem by use a buffered data channel between processes 
executing at different priorities in order to avoid blocking. Buffering does 
not apply to call channels and barriers, for which a redesign is required 
to solve the priority conflict. This information can be used by the design 
tool to change rendezvous data channels into buffered data channels, 
which solve priority conflicts. With this information, together with the 
frequency of the processes, one can determine over-sampling or sub-
sampling type of buffered data channels. 

3.8.5 Companionship between communication 
and composition 

Compositional relationships are orthogonal to communication 
relationships. However, the compositional relationships can determine 
the need for buffered communication. The valid configurations for data 
channels are depicted in Figure 3-66a-f. 
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Figure 3-66 Valid data channel configurations: 
(a) rendezvous channel or buffered fifo channel 
(b) buffered sub-sampling channel, 
(c) buffered super-sampling channel, 
(d) buffered fifo channel, 
(e) buffered fifo channel with initial value, 
(f) buffered fifo channel with initial value. 

For each configuration, the communication relationship and 
compositional relationship are depicted in one figure. Figure 3-66a-c, 
buffered channels can improve the performance of a process architecture 
in circumstances where unbuffered channels cannot sufficiently decouple 
multiple frequencies. Buffered communication has the side effect that it 
reduces the number of context-switching or solves priority conflicts. One 
should be careful with buffering in Figure 3-66a, because buffered 
communication can jeopardize the reactivity and responsiveness of a 
concurrent system. Buffered channels can compensate latencies on 
external channels. Figure 3-66d-f are useful when existing processes with 
existing process interfaces must be connected in compositions other than 
parallel. In case a channel is connected between guarded processes in an 
alternative construct, the channel c must not be part of the guards (see 
Figure 3-66f). 

Communication via call channels and barriers are restricted to equally- 
and unequally-prioritized parallel compositions. See Figure 3-67 and 
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3-68. Method calls without return values could be buffered by a buffered 
call channel, but this feature is not support by the graphical modelling 
language. Thus, call channels and barriers are unbuffered. In case of a 
priority conflict, a redesign is required to solve the performance 
bottleneck 

 

Figure 3-67 Valid call channel configurations. 

 

Figure 3-68 Valid barrier configurations. 

3.9 Design freedom 
The proposed graphical modelling language comprises significant 
freedom during design, which makes the development of CSP diagrams 
easier in the following ways: 

1. The user can leave compositional relationships between processes 
undefined when any order of execution is accepted. 

2. The user is no longer restricted to a predefined framework. The 
user can influence the framework of code generation by defining 
compositional relationships between processes. The framework 
will adapt to the desires of the user.  

3. The design can be further refined by adding compositional 
relationships whereby redundant information is allowed. One can 
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over-specify the design to be sure that the requirements are met. 
Over-specifying can be useful when the diagram is viewed from 
different perspectives and this does not have to make the 
program more complex. Of course, redundant relationships can 
also be automatically removed or hidden by the design tool. 

4. The run-time environment (kernel) takes care of the non-
deterministic behaviours of the parallel and alternative 
relationships. The program becomes truly event-driven and the 
user does not have to concern with lower-level states in regard of 
multithreading or sequencing. 

5. A design tool can frequently check the model for design failures, 
like compositional conflicts. During design, any design failures 
are treated as warnings. Such a tool can highlight the path(s) in 
which a particular failure occurs. This could be done similarly as 
a word processor that underlines the incorrect words or suggest 
other grammar. In short, the tool can guide the user to improve 
the model without restricting the design freedom. In the final 
model any remaining failures are considered as errors. 

3.10 Refinement and verification 
Process architectures should satisfy the desired requirements. If these 
requirements are not met then the design is incomplete and it is subject 
for further refinements. A CSP diagram encompasses information that 
allows verifying the design prior to executing the code. This makes any 
trial-and-error approach in early stages in the development unnecessary.  

In case the design does not meet the requirements, additional 
relationships must be specified—the model needs to be refined. The user 
will undertake refinement steps until the requirements are achieved. The 
refinement and verification approach is a continuously interactive 
process. 

Cycles specify redundant compositional relationships which help with 
detecting specification conflicts between the specified relationships and 
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the requirements. The ultimate refinement step results in a complete 
composition diagram whereby all processes are visually connected to 
each other. This can be simplified by tree-structures using deep or flat 
hierarchies. The density of connections in a complete composition 
diagram makes the model complex and difficult or impossible to read. 
Although, a complete composition diagram has a unique solution, 
usually, a unique solution is not the goal of the user. Any valid solution 
that satisfies the requirements is adequate. This can be useful when the 
hardware provides feedback and determines an optimal solution that 
best performs on the embedded computer system. 

3.11 Conclusions 
In this chapter, a graphical modelling language is defined, which is 
useful for designing process architectures in the form of CSP diagrams. 

A CSP diagram consists of two distinct views, respectively the 
communication diagram and the composition diagram. Each diagram 
describes a different concurrency concern in the system. The 
collaboration between both diagrams provides valuable information 
about their compositions that is useful to determine design conflicts, such 
as specification conflicts, deadlocks, and priority inversion problems. 
This information can determine the exact type of communication (e.g. 
rendezvous, buffered, sub-sampling, super-sampling) between processes 
that is necessary to solve design conflicts or to optimize the performance 
of the process architecture in a systematic way. Composition diagrams 
can be traced for various design decisions which may be in conflict with 
the specification or mind set of the user. Thus, CSP diagrams incorporate 
guidance for the user to avoid design and coding errors. 

The language is process-oriented and it extends to object-orientation. The 
presented graphical modelling language acts as a glue-logic between 
structured methods and object-orientation and thus providing 
continuation between the two paradigms. The graphical modelling 
language does not prescribe the design process of developing concurrent 
systems, but it offers guidance for stepwise refinement. The language can 
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be used at every level of abstraction with the same graphical notations 
and semantics. Furthermore, the language abstracts away from hardware 
or software implementations. CSP enhancements have been 
incorporated, such as exception handling, priorities, timing, and 
imperative facilities. These enhancements are essential for designing real-
time process architectures. 

The graphical modelling language does not prescribe styles for designing 
CSP diagrams. The user can design complex diagrams that are 
unreadable to others. Thus, the user is responsible for the readability of 
the diagrams. 

Essentially, the resulting designs must be implementable. The design 
process is guided by rules, such as: 

• Compositional analysis rule—useful for analyzing compositional 
CSP constructs. It is used for determining operators on hidden 
interrelationships derived from user-specified paths of 
relationships, for writing ambiguous or unambiguous algebraic 
expressions, and for detecting specification conflicts. 

• Reallocation rules—rules for reallocating relationships with 
another, possibly nearest, process while preserving the algebraic 
expression. 

• Balancing cycles—technique that ensures a balanced cycle of 
correct parenthesizing indexes. 

These rules offer analysis approaches that guarantee consistency and 
correctness, such as 

• Specification analysis—finding specification conflicts whereby 
relationships are in contradiction in the design. 

• Deadlock analysis—finding deadlock by searching for sequential 
conflicts between primitive communication processes. 

• Priority inversion analysis—finding priority inversion problems 
by searching for priority conflicts between processes. 

A CSP diagram can be mathematically analyzed (model-checked), 
simulated, and finally executed on a dedicated embedded real-time 
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system. CSP diagrams are a sort of state diagrams that do not suffer from 
state explosions. 

Design tools that support this graphical modelling language are 
inevitable in order to really benefit from CSP diagrams. 





 

C H A P T E R 4 

A CSP library for 
compositional programming 

 of concurrent Software 
4 A CSP library for compositional programming of concurrent software 

4.1 Introduction 
Processes and their interrelationships, as discussed in Chapter 3, are 
detailed by an object model. The object model is called Communicating 
Threads (CT). CT is based on object-oriented techniques described by 
class diagrams and CT is implementable by object-oriented 
programming languages. This results in a CSP-based library for each 
object-oriented programming language. The library implements an 
application programming interface (API), which is used to program 
communicating processes and compositional constructs.  

The CT API for the programming language Java is defined and presented 
in this chapter, which is called Communicating Threads for Java (CTJ). 
Other libraries have been created for the programming languages C (in 
object style) and C++. These libraries are called Communicating Threads for 
C (CTC) and Communicating Threads for C++ (CTC++). CTC and CTC++ 
are native coded and they are therefore much faster and more compact 
than CTJ. CTC++ is used for high-performance real-time control 
applications, which are discussed in Chapter 6. CTC is useful for 
processors that are not supported by a C++ compiler. CTC is part of 
CTC++. CTJ is used for prototyping and illustrative purposes. Each 
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library is influenced by the limitations of the syntax and taxonomy of the 
programming language. 

CTJ illustrates that the user will be freed from explicitly dealing with low 
level multithreading issues, e.g. creating, destroying, and synchronizing 
threads. More precisely, the user will be using threads without 
programming threads directly. CTJ offers clean compositional design 
patterns without polluting objects with synchronization constructs (e.g. 
monitor constructs). CTJ outlines the fact that the notion of processes is 
inevitable in order to let object-orientation succeed in concurrent 
software. 

In Section 4.2, the approach and background of the implementation are 
motivated. CTJ is described in Sections 4.3 to 4.7. In Section 4.3 the 
process interface is described. The channel and barrier interfaces are 
described in Section 4.4 and 4.5 respectively. These implement the 
communicational interrelationships as discussed in Chapter 3. The 
compositional constructs are described in Section 4.6. These constructs 
implement the compositional interrelationships as discussed in Chapter 3. 
Timing and sampling are crucial in real-time systems and these issues are 
discussed in Section 4.7. 

4.2 Approach and background 

4.2.1 CT object model 

The CT object model presents a concurrency model for building reliable, 
robust, and real-time concurrent software in object-oriented 
programming languages. The CT object model is described by classes, 
interfaces, and relationships that separate concerns by object-oriented 
techniques. The CT object model is the meta-model for CTJ and other 
CSP libraries. Several aspects of the occam and Ada languages (Burns 
and Wellings, 1990) have been incorporated into the object model. The 
development of CT was based on a rapid prototyping strategy, because 
the development was strongly driven by technical issues and alternative 
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solutions had to be investigated. A good match between the API and its 
low level implementation is essential. CT has to be efficient and therefore 
it was designed in such a way that the performance is eminent for a large 
class of embedded systems with limited systems resources. The 
implementation has to be able to deal with common implementation 
detail, like interrupt handling, timers, memory management, and I/O 
control. The design of CT is described with the help of class diagrams 
(UML 1.4) and this process is interleaved with coding in Java. 

The semantics of the CT constructs are a subset of the semantics of the 
CSP operators. The CSP theory comprises non-determinism, which is as 
such not implementable on computers. For example, fairness and 
unfairness of thread scheduling is based on priorities, which is not 
judged or captured by the CSP operators. CSP abstracts away from that.  

Priorities are important for developing real-time software. On a single 
processor, priority policies are important to accomplish efficient 
execution of the program. Priority policies can be seen as a gloss on the 
semantics of the CSP operators. They bring about restrictions to the 
theoretical ordering of events in event-traces. This should have no effect 
on deadlock or livelock checking with untimed CSP. Note that priorities 
have effect on a timely basis like performance. However, a poor priority 
scheme may result in poor performance. The worst-case scenario is 
starvation, which may lead to livelock or deadlock. This kind of 
starvation indicates that the program cannot meet its real-time 
requirements anyway. Since the CSP operators are compositional, 
priorities and priority policies must also be compositional. That is, 
priorities are relative and not absolute. 

The CT object model must be consistent with the graphical modelling 
language as defined in Chapter 3. 

4.2.2 Java thread model 

Java encompasses a thread-model in the language, supported by its run-
time environment. Currently, Java suffers from significant run-time 
overhead and high memory footprint. Furthermore, Java is not suitable 
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for real-time applications. Welch (1996) illustrated this problem by the 
“The Starving Philosophers” example. This example shows that the Java 
monitor is statistically correct, but the monitor can cause starvation on 
certain timing constraints. It is possible that with certain timing, certain 
threads always stay on the waiting queue of the monitor. These threads 
will starve to death, even though there is enough time for the program to 
meet their real-time requirements.  

4.2.3 Communicating Threads for Java 

CTJ presents an alternative for the Java thread model for building 
reliable, robust, and real-time concurrent software in Java. CTJ is the 
implementation of the CT object model in Java. CTJ was not intended for 
high-performance control systems. Despite the previously mentioned 
disadvantages of Java, Java is considered to be a good programming 
language for exercises and educational purposes on different target 
computers. The programming languages C and C++ are used for high-
performance embedded real-time systems. Therefore, CTC, CTC++, and 
CTJ were developed to illustrate the portability of the object-model to C, 
C++, and Java. CTC and CTC++ illustrate optimized performance (test 
show that CTC and CTC++ are about 400 times faster than CTJ), low 
memory-footprint, and portability to a large variety of processors. 

Consistency between CT and the graphical modelling language in 
Chapter 3 should allow for a straightforward implementation of CSP 
diagrams to Java with CTJ (or to C/C++ with CTC/CTC++). 

4.2.4 Aspects 

Applying object-oriented techniques, object-oriented programming 
languages, and applying heterogeneous computer hardware at a 
reasonable performance, are desired requirements that were previously 
discussed. Three other requirements are important aspects that were 
considered during the design and implementation of the CT object model 
and the CSP libraries. 
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These aspects are: 

• Simplicity 

• Portability 

• Generality 

These three aspects are already an integral part of the graphical 
modelling language in Chapter 3. This is because the CSP theory 
comprehends simplicity, portability, and generality by offering 
abstraction and fundamental concepts. 

Simplicity 

Usually, libraries and frameworks grow and become more complicated 
with addtional features, that were forgotten, that compensate limitations 
of the already implemented features, or that one thinks that may be 
needed in the future. However, it takes real skills to keep features out 
that are not really necessary. This is what the occam’s razor is intended 
for. With the occam’s razor in mind, every feature is judged for necessity. 

CT was developed with the Occam’s razor in mind. The Occam’s razor 
(Beckett, 1994; Hiroshi, 1997; Skeptic, 2004) is an approach to make things 
as simple as possible, but not simpler. Relevant information should not 
be lost due to simplification. It is important to meantion that the Occam’s 
razor is inherently part of CSP. Consequently, CSP offers a minimal set of 
necessary concepts to describe concurrent systems. This explains the 
name occam as the name for the programming language that implements 
a subset of CSP (Inmos, 1988). 

Portability 

CT aims to be portable to a large variety of embedded computer systems 
and to a variety of object-oriented programming languages. Java is a 
portable programming language. Other object-oriented programming 
languages, such as C and C++, are not always portable. These native 
languages can address platform specific instructions. 
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In order to gain portability and maintain program structure, it was 
decided to write code in portable C/C++ and as little as possible in 
assembler language. About 99% of CTC/CTC++ is written in portable 
C/C++ and less than 1% is processor-specific. Portable C/C++ code is 
written in C/C++ with no platform specific pointers or dependencies. 
The processor-specific methods must be implemented for each CPU and 
perhaps specific for each different operating system. An overview of the 
processor-specific methods is given in Appendix B. Assembler language 
can be used when processor-specific instructions are required (e.g. 
swapping stack pointers or saving and restoring the processor context). 

Generality 

CT aims to be generally applicable for concurrent computer systems. CT 
should be applied to all kinds of concurrent and real-time applications 
and was not made for control applications alone. 

The API of CT should obey the semantics of the CSP concepts and it is 
designed in such a way that the API solely serves the application. The 
implementation of the API is devoted to the CPU, but the API is devoted 
to the user. This holds for any platform or for different programming 
languages. This implies that the user should not notice major differences 
in the semantics of the CSP concepts for different programming 
languages. 

The CSP constructs, channels, and barriers simplify concurrent software 
by abstracting away from the underlying thread control. Therefore, CT 
can implement its own threads using an embedded scheduler (as in the 
current implementation) or CT can borrow threads from an operating 
system (this can involve a POSIX library). The API of CT should abstract 
away from single- and multi-processor systems. 
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4.3 Processes 
A process is a component that can play the role of a CSP process or a 
process instance. When the process is performing its (real-time) task, it 
plays the role of a CSP process. A process that is not running (e.g. has not 
started or has terminated) can be treated as a process instance. A process 
instance is the existence of a process in memory, like an object. Either 
way, a process is not an object. 

 

Figure 4-1 Role game of a process (state diagram). 

Figure 4-1 illustrates the role game between the process instance and the 
CSP process. A process that is constructed and instantiated becomes a 
process instance. Once the process instance is invoked to run, it plays the 
role of a CSP process. When a CSP process terminates, it returns back 
into a process instance. A process dies when the process instance is 
destructed. 

The distinction between CSP processes, process instances, and objects 
serves separate concerns in the program. This distinction was discussed 
in Section 3.2. In CT, process classes are distinguished from object classes. 
A process class describes and implements a process communication 
interface and a process communication interface for processes of the same 
kind. An object class describes and implements an object interface for 
objects of the same kind. Java supports only object classes. The Java 
syntax can be used to describe process classes by imposing an 
arrangement of rules and semantics. 

Process Instance 

construct 

CSP Process 

destruct 

run 

return 
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4.3.1 Process instance interface 

The process class describes a constructor, a destructor, support methods, 
and a single run() method. These elements specify the process instance 
interface. The implementation relationship between the class and interface 
is shown in Figure 4-2a-b. Figure 4-2a illustrates the construction of the 
MyProcess class. This can be simplified in the UML by using the 
stereotype label <<process>>, see Figure 4-2b. 

 

Figure 4-2 UML class diagram of MyProcess process: 
(a) by interface inheritance, 
(b) by stereotyping. 

The run() method, as defined by the csp.lang.Process interface, is 
required for every process. Therefore, a process must implement the 
csp.lang.Process interface, which specifies a public run() method. This is 
similar as for Java’s java.lang.Runnable interface. is shown in Listing 4-1. 

public interface csp.lang.Process { 

 public void run() 

  throws ExceptionSet; 

} 

Listing 4-1 The process interface. 

The run() method implements a sequential task that the process 
performs when this method is invoked by its parent process. In real-time 
systems this run() method performs a real-time task. The process can 
throw a set of exceptions of type ExceptionSet when one or more 

MyProcess 

+ run() : void 

<implements> 

csp.lang.Process 

<<process>> 
MyProcess 

+ run() : void 

(a) (b) 

+ run() : void 
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exceptions occur in the process. See Section 4.6.4 for more information on 
exceptions. 

The parent process is allowed to call public methods on its child process 
instances to set up its pre-condition, to retrieve its post-condition, or to 
execute its run() method. The run() method or other methods can never 
be invoked simultaneously by multiple processes since a child process is 
owned by one parent process at the time. This simple design rule strictly 
separates each thread of control and enables a secure multithreading 
environment. Once the run() method is called on the process instance, 
the role of a process instance switches immediately to the role of a CSP 
process. Calling a public method on a CSP process is illegal and only 
channels or barriers should be used to change the state of a CSP process. 
When the process terminates (i.e. the run() method returns) then the role 
of a CSP process switches back to process instance. See Figure 4-1. 

Figure 4-3 depicts a class diagram that shows the associations of a 
process with other processes, channels and barriers. 

 

Figure 4-3 Process associations. 

Listing 4-2 shows an example of a template of a process class. 

class MyProcess implements csp.lang.Process { 

 

 ... private or protected declarations for local use 

 

 public MyProcess(process communication interface) { ... } 

 

 ... methods defining the process instance interface 
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 public void run() 

  throws ExceptionSet { ... do something } 

 

 public int get_parameter() { ... } 

 public void set_parameter(..) { ... } 

 public void add(..) { ... } 

 public void remove(..) { ... } 

 

 ... private or protected methods for local use 

} 

Listing 4-2 Example of a process class. 

The public constructor is called once on the instantiation of the process 
class. The constructor configures the process. The constructor sets up all 
of the initial resources, like references to channels, references to barriers, 
initial parameters, and the requisite pre-condition for the run() method. 
After construction, the reference to the process instance is available and 
offers the run() method waiting to be invoked. 

The pre-condition of a process is the constraint that must be true when 
the run() method is invoked. The post-condition is the constraint that 
must be true after the completion of the run() method. The post-
condition is usually the pre-condition for the next run. The initial state of 
a process is usually set by the constructor at instantiation. State handling 
methods (e.g. add(..), remove(..), set_parameter(..), get_parameter()) can 
be used to initiate or retrieve the state of a process after instantiation, but 
before or after invoking the run() method. These methods are thread-safe 
since they are exclusively used by the parent process. These methods 
offer dynamic construction of the process at run-time and they must 
strictly serve the run() method. An example of using state handling 
methods is described in Appendix D.5. 

4.3.2 Process communication interface 

The channel-ends and barrier-ends that are passed via the constructor 
specify the process communication interface. These channel-ends and 
barrier-ends are the ports through which the process communicates with 
other processes. One can observe the behaviour of the process through 
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these ports. The process communication interface does not offer public 
methods, but it may specify the services (methods) that can be requested 
via channels. 

4.4 Channels 
Channels establish interactions between processes. Channels are 
intermediate objects that allow anonymous and point-to-point 
communication between two processes. Processes know their channels 
but they do not know the processes they interact with. Channels take 
care of synchronization, scheduling, and message delivery of data via the 
underlying hardware. There are two types of channels supported by CT. 

These channels are: 

1. data channels 

2. call channels 

Data channels are lower-level channels for sending primitive data or 
objects from a producer process to a consumer process. Data channels do 
not return objects or data. Call channels are higher-level channels for 
requesting a method call from a client process to a server process that 
will perform the call once it has accepted the request. Call channels may 
return objects or data. 

4.4.1 Synchronization 

Channels are thread safe, i.e. they are synchronized objects so that no race 
hazards can occur within channels. A channel protects its internals by 
mutual exclusion between its readers and writers, or callers and callees. 
Thus, CTJ channels can be safely shared between multiple processes. 
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4.4.2 Scheduling 

A writer process can write to a channel at any time and the process will 
be blocked to wait for some other process to read from the channel. 
Similarly, a reader process may read from a channel at any time and it 
will be blocked to wait for some other process to write on the channel. 
Blocking is entirely passive, the blocked process consumes no processor 
time and another (non-blocking) process gets the processor time to 
execute instead. When both processes are willing to communicate then 
instantaneous communication will happen and no withdraw is 
possible—this is called rendezvous. On rendezvous they engage in the 
communication event. After the communication event both processes are 
unblocked and both can continue in parallel. On a single processor 
system, the channel determines which thread of control is scheduled 
first. The channel complies with a prioritized scheduling policy to ensure 
fairness. Due to the rendezvous principle one can abstract away from 
thread states. This is explained in Chapter 5. 

Buffered data channels can store data that is to be delivered at a latter 
time. Buffered data channels extend the rendezvous principle in 
circumstances that requires unblocking communication between 
processes, which are executing at different frequencies (Chapter 5). In 
this circumstance, buffered data channels extend the scheduling policy 
that is required to guarantee that these processes (at different priorities) 
can meet their deadlines. The total scheduling policy of a process 
architecture is composed by the type of channels. 

4.4.3 Message delivery 

Channels can pass messages (e.g. data, objects, requests) with pass-by-
value or with pass-by-reference. Each mechanism has its advantages and 
disadvantages. 

• The pass-by-value mechanism is safe, fast for small messages, 
reuses memory efficiently, independent of shared and 
distributed memory system, and has a good reputation with 
occam on transputers. 
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• The pass-by-reference mechanism is fast for large messages on 
shared memory systems. Precautions are required to use it 
safely. Cloning messages is required on message delivery 
between distributed memory systems. Cloning requires 
expensive memory management. A simple and elegant solution 
is passing ownership of the message. That is, a sender sends a 
reference of an object and immediately releases its ownership of 
the reference. Consequently, the receiver will be the only 
process claiming the ownership of the object. 

Data channels support both message delivery mechanisms. Call channel 
support pass-by-value for primitive data types and pass-by-reference for 
objects. These message delivery mechanisms are further discussed in 
Appendix H. 

4.4.4 Data channels 

A data channel transfers primitive data types or objects in one direction. 
Data channels are initially unbuffered and do not store messages in the 
channels. A generic data channel has been developed from which other 
data channels can be derived. 

Generic channel type 

In CTJ, a data channel interface consists of a channel input interface and a 
channel output interface. The channel input interface specifies one or more 
read(..) methods and the channel output interface specifies one or more 
write(..) methods. Processes communicate by reading or writing on 
channels using these methods. 

The generic data channel is implemented by the Channel class. Its 
read(..) and write(..) methods are protected and only available for its 
subclasses. The Channel_of_Object class makes these methods public. The 
Channel_of_Object channel can communicate all kinds of objects, which 
provides a great deal of flexibility and generality. The Channel_of_Object 
class implements a channel input interface and a channel output 
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interface; the ChannelInput_of_Object interface and the 
ChannelOutput_of_Object interface respectively. For generalization, the 
ChannelInput_of_Object is of type ChannelInput and 
ChannelOutput_of_Object is of type ChannelOutput. See Figure 4-4. 

 

Figure 4-4 UML class diagram of the Channel_of_Object channel. 

The ChannelOutput_of_Object interface specifies the method 

public void write(Object object) 

and the ChannelInput_of_Object specifies the method 

public Object read(Object object) 

These read() and write() methods support both pass-by-value and pass-
by-reference. The choice of message delivery mechanism depends on the 
type of channel in a distributed or shared memory system and it depends 
on the ability of the receiver to reuse memory. 

The write(object) and read(object) statements are used to allow pass-
by-value. On rendezvous the channel copies the content of the specified 
object in write(object) at the producer side to the specified object in 
read(object) at the consumer side of the channel. 

Channel 
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ChannelInput ChannelOutput 

+ write(Object object) : Object 
+ read(Object object :  Object 

+ read(Object object) : Object 

<implements> <implements> 
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- write(Object object) : Object 
- read(Object object :  Object 

+ write(Object object) : Object 
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In circumstances where the size of messages can change, cloning or 
reference passing is required. In order to enforce pass-by-reference, 
statement object = read(..) is required. This allows receiving objects, 
arrays, or strings of variable length. It is important that the sender 
releases its ownership of the message that is passed. The object = 

read(object) statement can choose between pass-by-value and pass-by-
reference. The choice depends on the platform and the implementation of 
the data channel. For example, a distributed system may require cloning 
objects over a remote channel. Since the objects are specified by the 
read() and write() methods, their memory can be efficiently be reused at 
both sides of the data channel. 

The channel may provide additional read(..) and write(..) methods 
that can support cloning or reusing message objects. The following 
read(..) methods always returns a clone of the message or an 
IOException when cloning is not supported. 

obj = chan.read(null); 

obj = chan.read(); 

The programmer or the garbage collector must destroy the message 
object obj when it is no longer used. These kind of read(..) methods 
depend on dynamic memory management and for this reason these 
methods are usually avoided for real-time programs. 

If the messages are of fixed length and reusable then the return value can 
be ignored, as in: 

chan.read(obj); 

A producer/consumer example is given in Appendix D.1 

Restrictions and compatibility 

Processes can only be connected when their process communication 
interfaces specify pairs of channel-inputs and channel-outputs of the 
same type. Also, the source and destination message objects must be of 
the same type otherwise an exception will be thrown to both processes. 
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This implementation of the generic data channel can only pass objects 
with public attributes. Protected and private attributes are inaccessible by 
the channel copy() method. The copy() method allows for deep copying 
(i.e. copying object within objects) and reference passing. 

Overview of features 

The generic data channel was designed and implemented in such a way 
that: 

• different data channels can be derived from this 
implementation, 

• hardware and software concerns are separated, 

• implementation complexity problems can be explored, 

• one can learn about the feasibility of a generic implementation. 

The generic data channel provides the following features: 

• a primitive interface, 

• support of object transfer, 

• support of pass-by-reference and pass-by-value, 

• safe for multiple readers and multiple writers (Any2Any), 

• usable as a guard in alternative constructs, 

• initially zero-buffered, but can be extended with a buffer, 

• support of shared memory and distributed communication, 

• support of  timed communication events, 

• support of a priority scheduling policy for optimal performance 
on single processor systems. 

The generic data channel implements the Any2Any channel. An 
Any2Any type of channel is a safe channel between any (one or more) 
writers to any (one or more) readers. One2Any, Any2One, and One2One 
channel types, as in JCSP (Welch and Austin, 1999), can be derived from 
the generic data channel. These channel types restrict channel sharing 
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and therefore they can offer optimized performance and documentary 
help. On the other hand, using an One2One data channel in an Any2Any 
connection makes the channel crash. The generic data channel will not 
crash and processes behave in a natural way, such as blocking or 
deadlocking. For now One2Any, Any2One, and One2One channel types 
have been postponed and put on the list of recommendations. 
Furthermore, the use of templates (as found in C++) would make 
creating channels simpler. Templates in Java may become a useful 
feature in the upcoming Java 1.5 (Sun Microsystems, 2004). 

Specific channel types 

The Channel class implements generic methods that one can use to create 
channels for specific message types. The reads and writes on the channel 
are delegated to the generic read(..) and write(..) methods of the 
Channel class. In Chapter 3, these read(..) and write(..) methods are the 
primitive communication processes on data channels. 

In CTJ, Channel_of_Integer channels send objects of the Integer class (in 
the csp.lang package) or data of primitive data type int. The Integer 
object type is basically a wrapper for int with additional methods. The 
Integer wrapper is a modified version of the Integer class in the 
java.lang package; the int value attribute has been made public rather 
than private. Hence, channels can only copy public attributes. 

The ChannelOutput_of_Integer interface specifies two write(..) methods: 

public void write(Integer integer) 

public void write(int integer) 

The ChannelInput_of_Integer interface specifies two read(..) methods: 

public Integer read(Integer integer) 

public int read() 

Any write(..) method can be used in conjunction with any read(..) 
method. The user can mix Integer and int types at the sender or receiver 
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side. If Java would support multiple return types then public Integer 
read() could be added. This is on the wish list for Java 1.5. 

The Channel_of_Integer channel can contain a special link driver as 
specified by its constructor: 

Channel_of_Integer(LinkDriver linkdriver) 

When a link driver is specified, the reads or writes on this channel are 
delegated to the specified link driver; otherwise they are delegated to the 
Channel class. This concept allows for the plugging in of link drivers that 
can delegate communication to hardware or via a special buffer. 

csp.lang.… Channel_of_… ChannelInput_of_ … ChannelOutput_of_ … 

Object 
 

Boolean 
 

Byte 
 

Char 
 

Double 
 

Float 
 

Integer 
 

Long 
 

Short 
 

Reference 
 

extra 

Channel_of_Object 
 

Channel_of_Boolean 
 

Channel_of_Byte 
 

Channel_of_Character 
 

Channel_of_Double 
 

Channel_of_Float 
 

Channel_of_Integer 
 

Channel_of_Long 
 

Channel_of_Short 
 

Channel_of_Reference 
 

Channel_of_Trigger 

Object read(java.lang.Object) 
Object read() 

boolean read(csp.lang.Boolean) 
boolean read() 

byte read(csp.lang.Byte) 
byte read() 

char read(csp.lang.Character) 
char read() 

double read(csp.lang.Double) 
double read() 

float read(csp.lang.Float) 
float read() 

int read(csp.lang.Integer) 
int read() 

long read(csp.lang.Long) 
long read() 

short read(csp.lang.Short) 
short read() 

Reference read(csp.lang.Reference) 
Reference read() 

void read() 

Void write(java.lang.Object) 
 

void write(csp.lang.Boolean) 
void write(Boolean) 

void write(csp.lang.Byte) 
void write(byte) 

void write(csp.lang.Character) 
void write(char) 

void write(csp.lang.Double) 
void write(double) 

void write(csp.lang.Float) 
void write(float) 

void write(csp.lang.Integer) 
void write(int) 

void write(csp.lang.Long) 
void write(long) 

void write(csp.lang.Short) 
void write(short) 

void write(Reference) 

void write() 

Table 4-1 CTJ wrappers and data channel interfaces. 

The channel interface Channel_of_Integer is an example for all other 
primitive data-type channels. Table 4-1 gives an overview of the default 
data channel types that are provided by the CTJ library. A special 
channel Channel_of_Trigger has been included which does not send 
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information but it is used to trigger processes. This strong typing allows 
safety and interface matching. 

Reference channel type 

The Channel_of_Reference channel accepts only Reference objects. In fact, 
the Channel_of_Reference channel is a wrapper of a Channel_of_Object 
channel. A Reference object has a public Object object attribute for 
sending object references, as shown in Listing 4-3. The tag value can be 
used to identify the object. What is special about the 
Channel_of_Reference channel is that the attribute object at the writer side 
will be set to null by the write(..) method after communication and will 
be set to null by the read(..) method before communication. 

public final class Reference implements java.io.Serializable 

{ 

 public static final int UNDEFINED = -1; 

 

 // Public place holder for an object reference and tag. 

 

 public int    tag    = UNDEFINED; 

 public Object object = null; 

 

 ... support methods 

} 

Listing 4-3 The Reference class. 

Hardware link control 

The channel interface abstracts away from the hardware, such as 
memory or some device. Data channels encapsulate hardware control by 
means of link drivers (Hilderink et al., 2000; Hilderink et al., 1998; 
Hilderink et al., 1998). The concept of this framework is illustrated in 
Figure 4-5. 

Communication via channels provides platform independency that is 
two-fold: 
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1. Processes communicate with their environment (or hardware) via 
channels and never directly. 

2. The semantics and behaviour of channel communication is 
identical for single processor systems as for distributed processor 
systems. 

Figure 4-5 illustrates data channel communication between two 
processes at different levels of detail. The top figure shows the 
conceptual data-flow between two processes, which are connected with a 
communication relationship. The second figure illustrates the 
communication relationship as an intermediate channel object. Thus far, 
this is hardware independent. The third figure shows a link driver as 
part of the channel object to which the write and read methods are 
delegated. The write and read methods of the link driver carries out the 
hardware dependent code. The last figure shows that this mechanism 
scales for a distributed system. 

 

Figure 4-5 CT channel framework. 
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The link drivers establish the connection and must be compatible to each 
other. A special link driver framework has been developed that is used to 
implement data channels for dedicated hardware, like analogue-digital 
converters, counters, serial port, CAN, TCP/IP sockets, digital pins, etc. 
These kinds of channels are called external channels. Data channels using 
shared memory on a single processor are called internal data channels. 
Processes do not know if they communicate with internal or external 
data channels. Call channels do not support the link driver framework 
and are therefore always hardware independent in CT. Data channels 
should be used for communication via hardware. 

There are two ways to create a hardware specific data channel in CT, 
namely by means of: 

1. Delegation—A link driver object can be plugged into a data 
channel. The reads and writes will be delegated to the link driver 
object. 

2. Inheritance—A data channel inherits the LinkDriver class and 
implements channel interfaces. The LinkDriver class provides the 
necessary methods for synchronizing and controlling kernel 
functions. The channel implements a link driver but processes 
access the channel through the channel interface and not via the 
link driver interface. 

A guideline to separate concerns is that link drivers are the only objects 
that strictly control the underlying devices. The CT link driver 
framework is abstractly defined in such a way that it can be extended as 
needed, without affecting the process architecture. Processes usually do 
not use or create link drivers and become fully hardware independent. 
Hardware dependent processes are considered to be network builders as 
they setup and configure a network of processes and map the software 
on the topology of the hardware. The use of network builders allows a 
systematic approach, which makes the program highly hardware 
independent and consequently portable. Porting a program to a different 
target involves changing the network builders and leaves the other 
processes intact. 
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4.4.5 Call channels 

A call channel allows a client process to pass a message to a server process 
with the instruction that the server should perform a particular service 
(method). When the server is willing to accept the request (or call) then 
the service will be performed. It is the server process that performs the 
service and not the client process. A client blocks on the service call on 
the call channel until the server is ready to accept the method call and 
has performed the methods. The accept(..) method is invoked on the 
call channel by the server process when it is ready to accept a call. 
Similarly, the server process will be blocked on the accept(..) method 
until a client is invoking a method on the channel. Likewise, with data 
channels, both processes must rendezvous to engage in the 
communication event. Conceptually, this type of message passing is 
different from method invocation on objects where the invokee must 
follow the invoker. The channel strictly separates the behaviour of the 
client and server, which simplifies compositional programming. 

The call can specify arguments to be used by the service and any results 
of the service can be returned to the client. Hence, data transfer via call 
channels can be bidirectional and the arguments are passed by pass-by-
reference for objects and pass-by-value for primitive data types. The call 
must release the ownership of objects that are passed as arguments. This 
will prevent object sharing between the client and server. A service call is 
light weight on single processor systems. In case the request is accepted, 
the thread of control of the client process is borrowed and performs the 
method on the server process at the priority of the server process, as if 
the server performed the method. 

As with data channels, the client process sees the call channel and not the 
server process. Call channels were part of the occam3 language 
specification (Barrett, 1993). They provide rendezvous in the sense of an 
Ada entry-accept, but are considerably more flexible and lightweight. 

The services a server process can offer are specified by its call interface. A 
client can communicate with the server process via a call channel with 
the same call interface. Services can be partitioned by multiple call 
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interfaces. The call channel concept is generic, but there is no one generic 
call channel. A call channel can be straightforwardly generated from a set 
of call interfaces (service types). 

 

Figure 4-6 UML class diagram of MyCallChannel class. 

The class diagram in Figure 4-6 depicts the relationships between the 
different classes that constructs a call channel. In this example, the call 
channel MyCallChannel supports the call interfaces OnOff and 
OtherServices. A client process can call the methods 

• On() 

• Off() 

and an association with OtherServices allows the client to call  

• Calculate(..) 

• other methods prototyped in OtherServices 

A call channel supports multiple call interfaces. Each different call 
interface allows the separating of different groups of clients to 

CallChannel 

MyCallChannel 

OnOff 

CallChannelAccept 

+ on() : void 
+ off() : void 
+ calculate(int x, int y) : int 
+ … 

+ on() : void 
+ off() : void 

+ accept(Process p) : int 
+ accept(int method, Process p) : int 
+ accept(int[] methods, Process p) : int 
- join(int method) : void 
- fork() : void 

<implements> 

<implements> 

<inherits> 

OtherServices 

+ calculate(int x, int y) : int 
+ … 

+ accept(Process p) : int 
+ accept(int method, Process p) : int 
+ accept(int[] methods, Process p) : int 

<implements> 
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communicate via the call channel. A client/server example is illustrated 
in Appendix D.2. 

4.5 Barriers 
A barrier provides a multi-way synchronization point, which may 
involve a number (two or more) of processes. Any process synchronizing 
on a barrier will be blocked until all processes associated with the barrier 
reach that synchronization point. On rendezvous with the 
synchronization point, a special communication process could exchange 
data between all participating processes. The barrier releases the 
participating processes when the communication process has completed. 
The barrier can represent a communication event, a bag of events (Smith 
et al., 2003), or merged events (Lawrence, 1998). 

The theory of Bulk Synchronous Parallelism (BSP) (McColl, 1996) 
exclusively makes use of the barrier primitive to determine an optimized 
communication/processing trade-off for shared variable models. Roscoe 
(1998) notes that the BSP model is appropriate for large computations of 
numerical problems; it does not give any insight into the way parallel 
systems interact at a low level. CSP can be used to model the 
communication process that is performed by the barrier. The barrier, as 
proposed in this thesis, provides a process-layering concept. This 
process-layering concept allows one to create parallel programs using the 
BSP model in one upper layer and the CSP model in a lower layer. The 
CSP model implements the barrier. 

A barrier is an instance of the Barrier class and it can be set up with an 
initial number of associated processes. This is specified as 

Barrier barrier = new Barrier(int number); 

The synchronization point, at which processes associated with the barrier 
must rendezvous, is the point where these processes invoke the sync(..) 
method on the barrier. 
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void sync() throws ExceptionSet; 

The process will synchronize with all associated processes. Its 
implementation is restricted for shared memory systems. The next 
sync(..) method can be used for distributed memory systems. 

void sync(csp.lang.Process process) throws ExceptionSet; 

With this method the processes will synchronize with all associated 
processes and the barrier performs the specified process at each side of 
the barrier in parallel on rendezvous. process can be part of a network of 
processes with data channels that can describe the information exchange 
on a distributed system. In the current version of CTJ, a distributed 
barrier (i.e. a barrier connected to distributed processes) may not release 
all processes at the same time. After termination of process the sync(..) 
method releases the associated process. This allows one to create a 
distributed barrier with a particular process at each end of the barrier 
that communicates on external data channels (or with special link 
drivers). The appropriate behaviour of the barrier can be implemented 
with CSP concepts. The sync(..) methods will throw an exception set on 
error in the barrier. 

In Appendix D.3, an example is given which shows two processes that 
synchronize two times on a barrier and this illustrates the differences 
between sync() and sync(process). 

In a dynamic network of processes, the number of associated processes 
with a barrier could grow or shrink in time. In this case the number is 
unknown and one can specify a barrier without a fixed number, as in 

Barrier barrier = new Barrier(); 

Additional methods allow enrolling and resigning processes with the 
barrier at run-time. 

void enroll() throws ExceptionSet; 

The process will be associated with this barrier. Also, any process that is 
associated with the barrier can resign itself from the barrier with 
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void resign() throws ExceptionSet; 

If a process is the last process for which the barrier waits to synchronize 
and it resigns from the barrier then the barrier completes and releases all 
the remaining associated processes. If a process resigns from the barrier 
and only one process remains to synchronize on a barrier then the 
process must wait for a second process to enrol and synchronize with. 
This is because an event can only happen between at least two processes. 
Both enroll() and resign() methods can throw an exception set on error 
in the barrier. If the barrier was instantiated with constructor Barrier(10) 
then the number of processes that must synchronize is 10 and the 
methods enroll() and resign() do not alter that number. 

4.6 Compositional constructs 
In the previous section, the communication relationships (i.e. data 
channels, call channels, and barriers) in Java have been discussed. 
Processes are also related by compositional relationships. The parallel 
relationship was already shown in the examples of Appendices D.1, D.2, 
and D.3. The compositional relationships are implemented as 
compositional constructs in CTJ. These constructs are discussed in this 
section. A compositional construct composes a set of processes as one 
process and executes these processes in a particular order. The execution 
order is determined by communication and by compositional constructs. 

The set of compositional constructs that is supported by CT are: 

• Equally-prioritized parallel—the parallel construct 

• Unequally-prioritized parallel—the priparallel construct 

• Sequential—the sequential construct 

• Equally-prioritized choice—the alternative construct 

• Unequally-prioritized choice—the prialternative construct 

• Exception—the exception construct 
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These constructs are processes themselves and therefore they implement 
the Process interface (stereotyped <<process>>). Therefore, these 
constructs allow nesting of other compositional constructs. There are a 
few processes to which the process interface is implicit. For example, the 
switch-case clause and the try-throw-catch clause provided by the 
programming language can be used as anonymous processes for an 
alternative construct and an exception construct respectively. These 
anonymous processes are discussed in Section 4.6.3 and 4.6.4. 

4.6.1 The parallel construct 

The implementation of the CSP parallel operator in CT is prioritized and 
it is divided into 

• Equally-prioritized parallel construct 

• Unequally-prioritized parallel construct 

Equally-prioritized parallel construct 

The equally-prioritized parallel construct (parallel or PAR) executes a list 
of processes in parallel with equal priorities. A parallel construct is based 
on a process instance that is instantiated by the Parallel class, as in 

Parallel par = new Parallel(Process[] processes); 

The argument processes is an array of processes that begins executing 
when the run() method of the parallel construct is invoked, 

par.run(); 

The parallel construct will assign a separate thread of control to each 
associated process. Each thread of control will perform the run() method 
of the associated processes at the same priority as the main thread of 
control that entered the parallel construct. 
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The parallel construct is running when at least one of its associated 
processes are running. The parallel construct terminates when all 
associated processes have terminated. 

The following example shows a parallel composition of three parallel 
processes. 

Parallel par = new Parallel(new Process[] { 

 new Process1(process interface), 

 new Process2(process interface), 

 new Process3(process interface) 

}); 

 

par.run(); 

Listing 4-4 Parallel construct. 

The listed processes Process1, Process2, and Process3 will be executed in 
parallel when par.run() is invoked. These processes execute with the 
same priority as the Parallel process. The par process finishes 
successfully when all three of its associated processes have successfully 
finished. 

The parallel construct supports a few additional public state handling 
methods that allow the adding or removing of parallel processes in the 
software architecture at run-time. These methods are part of the process 
instance interface and they may only be invoked when the parallel 
construct is not running. This is similar as for the other compositional 
constructs in the next sections. 

New processes may be added at run-time, using 

par.add(new Process4(..)); 

or by adding multiple processes at a time: 

par.add(new Process[] { new Process4(..), new Process5(..) }); 

A process may be removed from the process list, using 
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par.remove(process); 

Unequally-prioritized parallel construct 

The unequally-prioritized parallel construct (priparallel or PRIPAR) 
executes a list of processes in parallel with declining (unequally) 
priorities. The execution of the first process in the process list is given the 
highest priority and the execution of the last process in the process list is 
given the lowest priority. These different priorities can improve the 
reactivity and responsiveness of the program. 

A process itself has no priority. In other words, one cannot assign a 
priority number to a process and one cannot ask a process what priority 
it has. The priority is given to the thread of control that is encapsulated 
within the process. The priparallel construct avoids one using priority 
index numbers. Priority indexes are an implementation issue and not a 
design issue. Priority indexes have only a meaning in relation to other 
priority indexes. Therefore priparallel constructs implement priority 
relationships that specify higher, equal, or lower priority between 
processes. 

The priparallel instance is constructed with 

PriParallel pripar = new PriParallel(Process[] processes); 

The following example (Listing 4-5) shows a priparallel construct of three 
processes. 

PriParallel pripar = new PriParallel(new Process[] { 

 new Process1(process interface),  // priority highest 

 new Process2(process interface),  // priority next highest 

 new Process3(process interface)  // priority lowest 

}); 

 

pripar.run(); 

Listing 4-5 Priparallel construct. 

The processes Process1, Process2, and Process3 will be executed in 
parallel with successively lower priorities. Process Process1 has the 
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highest priority. The pripar process finishes successfully when all three 
processes have successfully finished. 

Unfortunately, it is not always possible to move away from certain 
implementation issues. Due to improving the performance and saving 
memory, each priparallel construct is limited to 8 priorities; where 7 are 
for user defined processes and one is reserved. The reserved priority is 
private to the priparallel construct and can be used for an idle task, skip 
task, or garbage collector task. The restriction to 8 priorities allows quick 
priority sorting with the efficiency of order O(2) , i.e., a process can be 
placed into the correct priority queue in a maximum of two steps. 
Increasing the maximum number of priorities, i.e., more than 7, is 
possible by nesting. The following example, in Listing 4-6, illustrates a 
priparallel construct with 49 (=72) priorities. 

PriParallel pripar = new PriParallel(new Process[] { 

 new PriParallel(new Process[] {   // priority 0 

  Process1_1(..)        // priority 0.0 

  Process1_2(..)        // priority 0.1 

  Process1_3(..)        // priority 0.2 

  Process1_4(..)        // priority 0.3 

  Process1_5(..)        // priority 0.4 

  Process1_6(..)        // priority 0.5 

  Process1_7(..)        // priority 0.6 

 }), 

 new PriParallel(new Process[] {   // priority 1 

  Process2_1(..),       // priority 1.0 

  ...            // priority 1.1-5 

  Process2_7(..)        // priority 1.6 

 }), 

 new PriParallel(new Process[] {..}), // priority 2.0-2.6 

 new PriParallel(new Process[] {..}), // priority 3.0-3.6 

 new PriParallel(new Process[] {..}), // priority 4.0-4.6 

 new PriParallel(new Process[] {..}), // priority 5.0-5.6 

 new PriParallel(new Process[] {..})  // priority 6.0-6.6 

}); 

 

pripar.run(); 

Listing 4-6 Example of a nested priparallel construct. 

Note that the indexes in the comments show the internal indexing that is 
generated by the nested priparallel construct. 
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As with the parallel construct, methods like add(..) and remove(..) exist 
and an additional method is added to insert a process at run-time, using 

pripar.insert(process, index); 

Process process will be inserted at index of the process list. The order of 
priorities will automatically be applied to the new process list. 

4.6.2 The sequential construct 

A sequential construct (SEQ) performs processes in a particular fixed 
sequence. The sequential construct is the instance of the Sequential class. 
The sequential process instance is created with 

Sequential seq = new Sequential(Process[] processes); 

The argument processes is an array of processes that begins executing 
when the Sequential construct’s run() method is invoked, 

seq.run(); 

When the run() method of a sequential composition construct is invoked 
then the associated processes are executed one at a time by the same 
thread of control. The sequential construct process terminates when all 
associated processes have terminated. 

The following example shows a sequential composition of three 
processes. 

Sequential seq = new Sequential(new Process[] { 

 new Process1(process interface), 

 new Process2(process interface), 

 new Process3(process interface) 

}); 

 

seq.run(); 

Listing 4-7 Sequential construct. 
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In this case, Process1 executes to completion first, followed by Process2 
and then by Process3. The seq process finishes successfully when 
Process3 successfully finishes, i.e. when all three processes have 
successfully finished running in order. Sequential processes should not 
communicate with each other using (unbuffered) rendezvous channels, 
as this would cause deadlock. 

Additional to the add(..) and remove(..) methods, a new process can be 
inserted at a specific index in the list of processes at run-time, using 

seq.insert(process, index); 

4.6.3 The alternative construct 

Sometimes a choice must be made of one process out of a set of processes 
that are simultaneously committed in communication. Sequential 
programming languages, like Java, offer if-then-else clauses for making 
choices in the flow of control of the program. An if-then-else construct 
works for Boolean expressions but not for events, since an event cannot 
return true or false. An event occurs or does not. An if-then-else 
construct is only suitable for checking for conditions and not for catching 
events. 

CSP provides a choice operator that allows choosing one process out of 
many processes which are ready to engage in the first event. This process 
is also called alternative construct. The alternative construct combines a 
number of processes guarded by channel inputs, channel outputs and 
channel timeouts. The alternation performs the process associated with a 
guard which is ready (Roscoe, 1998). This process, to which a guard is 
associated, is called a guarded process. A guard is ready when the guarded 
process can engage in a first communication event, as the first action of 
the process. This is called conditional communication. If no guard is ready, 
the alternation will suspend until a guard becomes ready. A suspended 
alternative construct consumes no time. As soon as one guard becomes 
ready (i.e. an alting process at the other end of one of the channels is 
willing to communicate) it will resume the alternative construct followed 
by the execution of the guarded process. When the selected guarded 
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process finishes, the execution of the alternative construct finishes as 
well. 

The implementation of the CSP choice operator in CT is prioritized and is 
divided into 

• Equally-prioritized alternative construct 

• Unequally-prioritized alternative construct 

Equally-prioritized alternative construct 

The equally-prioritized alternative construct (alternative or ALT) is 
instantiated by 

Alternative alt = new Alternative(Guard[] guards); 

The argument guards is an array of guard objects. A guard is an instance 
of the Guard class. There are two ways to create alternative constructs in 
CTJ: as a composition-based construct or as a select-based construct. 

Composition-based construct 

The compositional approach is almost similar to the sequential and 
parallel constructs as described in the previous sections. The following 
example shows an Alternative composition for three guarded processes. 

Alternative alt = new Alternative(new Guard[] { 

 new Guard(channel1, new Process1(channel1, ..)), 

 new Guard(channel2, new Process2(channel2, ..)), 

 new Guard(channel3, new Process3(channel3, ..)) 

}); 

 

alt.run(); 

Listing 4-8 Composition-based alternative construct. 

The alternative process starts by invoking its run() method. Here, 
channeli is an input channel or output channel of Processi. The Guard with 
Processi is ready when a process at the other end of the channel is 
waiting. A guard that becomes ready is then candidate for selection. The 
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alt process waits until at least one guard becomes ready and completes 
successfully when one of the ready guards is selected and its respective 
guarded process has successfully executed. If more than one guard is 
ready then one guard will be randomly selected; theoretically this is a 
non-deterministic choice and practically any selection mechanism is 
applicable. CT’s alternative construct makes its selections fairly, i.e., when 
more than one guard is ready, the guard to execute will be selected 
according to a first-come-first-served policy and the process that it 
guards will then be executed. 

New guards may be added at run-time, using 

alt.add(guard); 

or by adding multiple guards at a time: 

alt.add(new Guard[] { guard1, guard2, ..}); 

A specific guard may be removed from the guard list, using 

alt.remove(guard); 

Processes that are specified in a guard can also be written as anonymous 
processes, as shown in Listing 4-9. 

Integer n = new Integer();  // n is an Object 

 

Process alt = new Alternative(new Guard[] { 

 new Guard(inChannel[0], new Process() { 

  public void run() 

  throws ExceptionSet { 

   inChannel[0].read(n); 

   ... do something with n 

  } 

 }), 

 new Guard(inChannel[1], new Process() { 

  public void run() 

  throws ExceptionSet { 

   inChannel[1].read(n); 

   ... do something with n 

  } 

 }) 

}); 
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for (int i=0; i<20; i++) { 

 alt.run();   // make the selection and run the response 

}        // 20 times 

Listing 4-9 Example of a composition-based alternative construct. 

Select-based construct 

The select-based alternative construct starts by invoking the select() 
method, as with 

i = alt.select(); 

Index i specifies the guard that was selected; i ∈ [0,n-1] and n is the 
number of guards. This method does not execute any specified process of 
the selected guard. Therefore, guards in a select-based construct do not 
specify processes. A switch-case clause can execute guarded processes. 
Examples are given in Listing 4-10 and Listing 4-11. 

Alternative alt = new Alternative(new Guard[] { 

 new Guard(inChannel[0]), 

 new Guard(inChannel[1]) 

}); 

 

Integer n = new Integer(); 

 

for (int i=0; i<20; i++) { 

 int index = alt.select(); // wait for a channel 

 inChannel[index].read(n); // read from selected channel 

 

 ... do something with n 

} 

Listing 4-10 Example of a select-based alternative construct. 

In CT, a channel can also play the role of a guard which simplifies the 
code. Every object that inherits the Guard class can play the role of a 
guard. This can only be used with the select-based alternative construct. 

Alternative alt = new Alternative(new Channel[] { 

 inChannel[0], 

 inChannel[1] 

}); 
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Integer n = new Integer(); 

 

for (int i=0; i<20; i++) { 

 int index = alt.select(); // wait for a channel 

 

 switch(index) { 

  case 0: inChannel[0].read(n); 

          ... 

          break; 

  case 1: inChannel[1].read(n); 

          ... 

          break; 

 } 

 ... do something with n 

} 

Listing 4-11 Example of a select-based alternative construct with simplified 
guards. 

For call channels, the following guards exist. A guard that guards a call 
channel for a particular method, denoted by constant number 
channel.METHOD, is: 

Guard guard = new Guard(callchannel, callchannel.METHOD, 

       new Process(callchannel,..)); 

A guard with a range of methods, for example on(), off(), and 
calculate(), is specified by 

Guard guard = new Guard(callchannel, 

       int [] { callchannel.ON, callchannel.OFF, 

         callchannel.CALCULATE }, 

       new Process(callchannel,..)); 

The guard that accepts any method is specified by 

Guard guard = new Guard(callchannel, 

       new Process(callchannel,..)); 

The same guard can be used at a client process or a server process. If the 
alting process calls a method on the call channel then this guard will 
assume an accept() by the guarded process. If the alting process is 
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accepting on the call channel then this guard will assume a call to 
method() by the guarded process. 

The call channel callchannel can play the role of a guard, as with data 
channels, without specifying the Guard class. Barriers cannot be used as 
guards in the alternative construct. 

Unconditional and conditional guards 

The guard object signals the alternative construct when it becomes ready. 
The policy of a guard to become ready can be conditional or 
unconditional. 

As shown in the previous section, a guard object may be declared as 
follows, 

Guard guard = new Guard(channel, new Process(channel,..)); 

The guard becomes true when argument channel is ready. The guard 
described above always participates in the alternative construct and is 
called an unconditional guard. A guard is a conditional guard when it is 
enabled and when some condition is true; otherwise the guard is 
disabled and omitted by the alternative construct. A disabled guard will 
never be selected. 

For example, in Listing 4-12 the variable condition.value represents the 
result of a Boolean expression. 

Boolean condition = new Boolean(false); 

condition.value = (temperature > 30); 

Guard guard = new Guard(condition, channel, new Process(channel,..)); 

Listing 4-12 Example of a conditional guard. 

If condition.value is true then the guard will be ready when the specified 
channel is ready, otherwise the guard is omitted and the guarded process 
will not be selected. The parent process of the alternative construct and 
guarded processes may update variable condition.value at any time. 
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A conditional guard is declared as 

new Guard(new Boolean(true), channel, new Process(channel,..)) 

and is equivalent to 

new Guard(channel, new Process(channel,..)) 

Applying conditional guards is useful for implementing a state machine 
on communication events in a safe and elegant manner. Similarly, 
conditional guards also exist for call channels. 

The skip guard allows the alternative constructs to withdraw and 
continue when no guard is true. An overview of skip guards is given in 
Appendix D.4.1 The timeout guard allows the alternative construct to 
withdraw and to continue after the expiration of a specified time when 
no guard is true. An overview of timeout guards is given in Appendix 
D.4.2. 

Unequally-prioritized alternative construct 

The unequally-prioritized alternative construct (prialternative or 
PRIALT) is similar to the alternative construct and is created by the 
PriAlternative class. The PriAlternative class extends the Alternative 
class and overrides the equally-prioritized choice mechanism with a 
unequally-prioritized choice mechanism. The prialternative construct is 
instantiated with 

PriAlternative prialt = new PriAlternative(Guard[] guards); 

The prialt process waits until at least one guard becomes ready and 
finishes successfully when one of the three guarded processes is selected 
and has successfully executed. The Guard with Processi may be selected 
when channeli is ready. Here, channeli is an input channel or output 
channel of Processi. If more than one guard is ready than the guard with 
the lowest index will be selected and the guarded process of the selected 
guard will be executed. 
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As with the alternative construct, methods like add(..) and remove(..) 
exist and an additional method is added to insert a process at run-time, 
using 

prialt.insert(guard, index); 

Guard guard will be inserted at index in the guard list. The order of 
priorities will automatically be applied to the new guard list. 

4.6.4 The exception handling construct 

Reliable software should deal with all situations in the environment, 
which have an effect on the behaviour of the software. Unusual 
situations can cause exceptional occurrences or exceptional states in software 
which, when unhandled, can cause an undesirable behaviour of the 
program. The exception manifests an error. Exceptions should be 
handled by a proper design concept that deals with its complexities, such 
as compositionality and state explosions. On the occurrence of an 
exception, it requires switching from the main process to the exception 
handling process. The exception handling process is called an exception 
handler. The main process is not concerned with exception handling. A 
proposed CSP-based exception handling construct is discussed in this 
section. 

The exception mechanism 

Exceptions are events and states of disruption of the current flow of 
control that occur at a particular time and space. Exceptions are observed 
by two behaviours: 

• An exception as an unsuccessful termination. An illegal state in 
a process can be seen as an exception from which point the 
process should stop continuing, like division by zero or a 
temperature value being out of range. In case of an exception, 
the process must abort its actions. In other words, the process 
must terminate unsuccessfully. The exception operator will 
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capture the unsuccessful termination of a process and preempts 
to the exception handling process. 

• An exception as an interrupt. Channels or barriers that are in 
exception prevent communication events. Processes that are 
willing to engage in communication events, on so-called 
corrupted channels or corrupted barriers, should escape from 
blocking forever. In this case, exceptions are a gloss on channels 
or barriers. In case a higher-priority process is waiting for a 
channel or barrier that becomes corrupt, the higher-priority 
process will preempt the running lower-priority process in 
order to terminate unsuccessfully. The exception will cause an 
interrupt of the running lower-priority process. 

The exception construct has been developed in CT in such a way that it 
goes with the other compositional constructs. The exception construct 
fulfils several desirable properties: 

1. The exception construct is derived from a theoretical model of an 
exception operator described in the CSP language (see Appendix 
C). The exception operator is simple enough and no changes to 
the semantics of the other CSP operators are required. The 
exception operator can be used for formal model checking and for 
reasoning about the behaviour of exception handling. 

2. This version of the exception operator abstracts away from 
exception types. 

3. The CT implementation of the exception handling should fulfil 
the semantics of the theoretical exception operator and 
encompasses exception types on which the exception handler can 
make decisions. 

4. The exception handling concept is lightweight and thread-safe. 

5. This exception mechanism implements the termination model of 
exception handling (Burns and Wellings, 1990). In the termination 
model, control never returns to the point in the program 
execution where the exception was thrown. The mechanism does 
not implement the resumption model of exception handling (Burns 
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and Wellings, 1990). The resumption model allows an exception 
handler to correct the exception and then return to the point 
where the exception was thrown. Error recovery is often not 
possible, or difficult to realize, with acceptable overhead costs. 

The exception mechanism collects the exceptions of each parallel 
construct. All compositional constructs contribute to this mechanism. The 
exception set will be passed (thrown) back to the caller of the process 
(construct), i.e. up the hierarchy of processes. At the level of the 
exception constructs, the exception set is caught and the set is available to 
the exception handler. The handled exception must be removed from the 
set by the exception handler. The set of remaining unhandled exceptions 
must be thrown by the exception handler so that it can be intercepted by 
another handler. 

The exception operator requires an exception set which contains 
individual exceptions that occurred in concurrent processes at run-time. 
In CT, the exception set is an instance of the ExceptionSet class. The 
ExceptionSet object collects the exceptions that occurred in the process 
and its child processes. Thus a process throws an ExceptionSet object on 
exception, see the process interface in Section 4.3. Each sequential 
construct has its own ExceptionSet object and thus an ExceptionSet object 
exists for every branch at the parallel and priparallel constructs. 

Errors can also occur in a channel, e.g. a hardware failure occurs in the 
system. Those errors which cannot be repaired by the channel must be 
thrown as exceptions. The exception handler should deal with one or 
more exceptions and therefore the exception set is important. Each 
exception must be collected in the exception set. The throw keyword in 
Java allows for throwing single exceptions and this is not according to 
the proposed theoretical model. Therefore, the throwExceptionSet method 
should be used instead of throw. The throwExceptionSet method appends 
the specified exception to the exception set. The exception set is a system 
attribute per sequential construct. Successively, the exception set is 
thrown by the method. For example, the channel (or link driver) can 
throw an IOException with 
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System.throwExceptionSet(new IOException(“cable failure”)); 

The specified IOException will be appended to the exception set and the 
exception set will be thrown to the invoking processes using the Java 
throw statement. The exception construct or the Java try-throw-catch 
clause must be used to catch the exception set. Three static 
throwExceptionSet methods are provided by the System class. 

The method 

System.throwExceptionSet(Exception exception) 

adds the specified exception to the exception set and throws the 
exception set instead of the exception. 

Similarly, the method 

System.throwExceptionSet(Exception[] exceptions) 

adds multiple exceptions to the exception set when more than one 
exception occurred at the same instance of time. If the throwExceptionSet 
method specifies an exception object that is already in the set then the 
exception object will be omitted and the set will be thrown. 

If the exception handling process does not deal with all exceptions then 
the handler must pass the remaining exception set to the next exception 
construct using 

System.throwExceptionSet() 

If the exception set is empty then this method will not throw the 
exception set but will return instead. 

The exception handling process can get the exception set of the current 
thread of control with 

ExceptionSet es = System.getExceptionSet() 

The ExceptionSet class offers a small set of public methods for the 
exception handling process. The exception handling process can use the 
iterator (of type ExceptionIterator), provided by ExceptionSet, to wander 



4.6 Compositional constructs 

 

175 

through the exception elements and deal with the individual exceptions. 
When the exception is handled, it should be marked as handled using the 
handled() method. 

An exception construct is defined by the ExceptionCatch class and can be 
instantiated with 

ExceptionCatch exc = new ExceptionCatch (new P(), new E()); 

This process performs process P and it switched to exception handler E 
on exception in P, according to the semantics of P EΔ  (Section 3.6.5 and 
Appendix C). As with any other process this construct can be executed 
with 

exc.run(); 

This process encapsulates the try-throw-catch construct and allows 
nesting with other compositional constructs. An example of exception 
handler E is illustrated in Listing 4-13. 

import csp.lang.*; 

import csp.lang.Process; 

 

public class E implements Process 

{ 

 public E() { ... } 

 

 public void run() 

  throws ExceptionSet { 

   ExceptionSet es = System.getExceptionSet() 

   for (ExceptionIterator i = es.iterator(); i.hasNext();) { 

    Exception e = i.next(); 

    ... handle exception 

    i.handled(); 

   } 

   System.throwExceptionSet(); 

 } 

} 

Listing 4-13 Exception handler process class. 

Java supports a language-based exception mechanism that implements 
the termination model of exception handling. The three keywords for 
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exception handling in Java are try, throw, and catch (Arnold et al., 2000). 
This is similar for C++. A method can throw a single exception-object up 
the hierarchy until a try-catch clause catches the exception. This try-
throw-catch mechanism is usually fast and it can implement the 
proposed exception mechanism in an efficient way. This try-throw-catch 
mechanism has similarities with the proposed exception handling 
mechanism. See the example in Listing 4-14. The exception will be 
removed from the exception set es. If the exception set is not empty then 
the exception set will be thrown further upwards; otherwise the 
exception handler terminates. The try-throw-catch construct is a fixed 
construct and not truly compositional. 

try { 

 ... perform process  -- process P 

} catch (ExceptionSet es) { 

  for (ExceptionIterator i = es.iterator(); i.hasNext();) { 

   Exception e = i.next(); 

   ... handle exception 

   i.handled(); 

  } 

  System.throwExceptionSet(); 

 } 

Listing 4-14 Example of a try-throw-catch clause with exception handling. 

Exceptions and sequential construct 

A sequential process that cannot engage in a communication event on a 
corrupt channel or corrupt barrier, is in exception. The channel or barrier 
will throw an exception and the sequential construct will unsuccessfully 
terminate. The exception is added to the exception set. 

Exceptions and parallel construct 

A parallel construct terminates when all parallel processes terminate 
whether or not they terminate successfully or unsuccessfully. The 
parallel construct terminates unsuccessfully when the exception set is not 
empty and the exception set is thrown. In other words, if one of the 
parallel processes in the parallel construct terminates unsuccessfully then 
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the parallel construct also terminates unsuccessfully. The parallel 
construct collects all exceptions that occurred in the parallel processes 
and the construct will throw the exception set on termination. 

Exceptions and alternative construct 

The alternative construct will terminate unsuccessfully when one or 
more channels in the guards are in exception. In this case the alternative 
construct cannot make a fair selection. The alternative construct will 
collect all exceptions in the exception set. Of course, the alternative 
construct will throw all exceptions that occurred in the guarded process 
it executes. This implies that when a guarded process unsuccessfully 
terminates then the alternative construct also unsuccessfully terminates. 

Exceptions and priparallel construct 

The mechanism is similar to the parallel construct. The exception 
handling at a higher priority can perform preemption of processes 
executing at lower priority. This preemption happens only when a 
process at a higher priority is invoking on a channel or barrier that is 
corrupt, or when the process is waiting for a channel or barrier that 
becomes corrupt (refused by the environment). 

Exceptions and prialternative construct 

The mechanism is identical to the alternative construct. 

Exceptions and exception construct 

The exception handler can throw a new exception, can pass unhandled 
exceptions, and can remove exceptions from the set that are handled by 
the handler. If the exception handler terminates unsuccessfully then the 
exception construct terminates unsuccessfully. 
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Other applications 

The exception construct can be used for things other than handling 
errors. For example, if processes must quit their tasks then the channels 
they use can be poisoned and these processes will terminate on reading 
and writing on poisoned channels. See the System.refuse(..) method in 
Section 4.7.2 . 

4.6.5 Nested compositional constructs 

The Sequential, Parallel, PriParallel, Alternative, PriAlternative, and 
Exception are compositional processes that may be nested (composed) 
within other compositional processes. Here, compositional programming 
is illustrated by an arbitrary example, see Listing 4-15. A single run() 
invocation starts the composition. At declaration of the construct, the 
initial state is set before the run() method is invoked. This makes the 
execution of the composition efficient. 

Process process = new Exception( 

 new Sequential(new Process[] { 

  new Parallel(new Process[] { 

   new Process1(..), 

   new Process2(..) 

  }), 

  new Alternative(new Guard[] { 

   new Guard(channel1, new Process3(channel1, ..)), 

   new Guard(channel2, new Process4(channel2, ..)) 

   new PriAlternative(new Guard[]  

    new Guard(channel4, 

     new Sequential(new Process[] { 

      new Process5(channel4, ..), 

      new Process6(..) 

     })), 

    new Guard(channel5,  

     new Sequential(new Process[] { 

      new Process7(channel5, ..), 

      new Process8(..) 

     })), 

  }), 

  new Parallel(new Process[] { 

   new Process9(..), 
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   new Process10(..) 

  }) 

 }), 

 new Process { 

  public void run() { 

   ... exception handling process 

  } 

 } 

); 

 

process.run(); 

Listing 4-15 Example of a nested construct with alternative construct. 

This example shows that the alternative construct can play the role of a 
process or the role of a guard. 

4.7 Timing and Sampling 
Control theory assumes a constant sampling period between successive 
inputs (sampling) and outputs (actuation) and the outputs should be 
calculated before the end of the sampling interval. Variations of the 
sampling interval can degrade the performance of the controlled system 
and even lead to instability of the system. This is called jitter, which is 
defined as the variation of a point in time around a reference point in 
time. Jitter should also be prevented between the multiple inputs that are 
supposed to be sampled at a predefined reference point in time. This is 
similar with multiple outputs. 

In control software, sampling and actuation should be independent from 
priority-based preemptive scheduling methods. Preemption causes 
variations in process execution. Timed threads are provided by operating 
systems for creating timely activated tasks or timed processes. Even 
when timed processes operate at the highest priority there is no 
guarantee of jitter-free behaviour when interrupts can preempt timed 
processes at any time. Therefore, sampling and actuation should not be 
performed by timed processes. Timed threads and timed processes are 
inadequate solutions for hard real-time control software. 
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The CSP paradigm offers a solution that is conceptually clean and 
without surprises. Sampling and actuation are timed events that are 
related to channel communication between the controller and the plant. 
Therefore, channels are concerned with sampling and actuation. This 
section introduces timed communication events. 

4.7.1 Timed communication events 

Timed communication events have been proposed in (Hilderink and 
Broenink, 2003). This proposal allows for a conceptual approach that 
incorporates timing on channels and barriers. The concept specifies that 
the environment may engage in communication events on a permanent 
or timely basis. 

Time is part of the environment. Therefore, CT provides some methods 
or system services that can be used to command the environment, say the 
environmental process, to accept or refuse communication events on 
channels or barriers, on a permanent or timely basis. This results in timed 
communication events or exceptions when the timing requirements are 
not met. 

The hard real-time timer and the associated interrupt service routine are 
part of the environment of the program. The environmental process can 
assign channels or barriers to the timed interrupt service routine and 
programs the timer. On the interrupt, the environmental process will 
engage in the communication event and at that moment communication 
takes place. The interrupt service will execute the link driver of the data 
channel, which performs sampling or actuation, at precise moments in 
time. Barrier and call channels do not provide link drivers and they will 
be released at the instance of time. 

This proposed concept offers, 

• atomic, accurate, and high-performance sampling and actuation, 

• notion of time to untimed CSP, 

• separation of concerns increases the reusability of processes, 
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• exception handling on crossing hard deadlines. 

If necessary, on the basis of timed communication events one can also 
create timed processes. 

4.7.2 System services 

The following methods are services that can be carried out by the 
environmental process. These methods are called by the control 
application and they are served by the environmental process when the 
environmental process is willing to accept the method call. The 
csp.lang.System class provides a global static call channel whose service 
can be invoked by any process at any time. These services are used by 
network builders which setup the timing on the created network of 
communication processes. 

Accept communication event at specified time 

System.at(channel, time);       // single-shot 

System.at(channel, time, interval_time);  // periodical 

The producer and consumer processes must be willing to communicate 
on the specified channel or barrier, before the environmental process is 
willing to accept the communication event at the specified time (in 
microseconds) or period. If this is not the case and the processes engage 
in the event after the specified time expires then the real-time 
requirement has not been met. In this case, any blocked process will be 
released and a RealTimeException exception is thrown at the producer 
and at the consumer. The first at(..) method specifies a single deadline 
and the second method specifies periodical deadlines. 

System.at(barrier, time);       // single-shot 

System.at(barrier, time, interval_time);  // periodical 

The environmental process will participate in the barrier synchronization 
and will commit to the synchronization at the specified time. If one 
participant does not sync before the environmental process then 
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RealTimeException exceptions will be thrown to all processes and all 
processes will be released. Hence, the real-time requirement has not been 
met. 

Accept communication event after specified time 

System.after(channel, time);      // single-shot 

System.after(channel, time, interval_time); // periodical 

The communication between the producer and consumer processes will 
be delayed until the specified time. Any communication after the 
specified time will be accepted and they both immediately continue. No 
exceptions are thrown. If an interval time is specified then the next 
waiting time will be incremented with the interval time. 

System.after(barrier, time);      // single-shot 

System.after(barrier, time, interval_time); // periodical 

The environmental process will participate in the barrier synchronization 
and will commit to the synchronization at the specified time. No 
exceptions are thrown. If an interval time is specified then the next 
waiting time will be incremented with the interval time. 

System.after(guard, time);      // single-shot 

System.after(guard, time, interval_time); // periodical 

If the alternative construct is waiting and the alting process at the other 
end is willing to communicate before the specified time then the guard 
will become ready at the specified time. This guard is called a timed 
guard. No exceptions are thrown. A timed skip guard is used for 
specifying a timeout-guard. The skip guard will be ready at the specified 
time and no exceptions are thrown at timeout. As with channels and 
barriers, the guard can be periodically timed. The specified interval time 
increments time each period. Since guards are local to a process, this 
implies that after(guard,time,..) is locally used and no other process 
can alter time on a local guard. 
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The timed guard can be used with at(..) and after(..). For example, 
the method after(guard,time1,..), with channel being part of guard, can 
be used with at(channel,time2,..) or with after(channel,time2,..). The 
method after(guard,time1,..) could endanger the deadline, as specified 
by at(channel,time2,..) when time1 > time2. In this case, the hard 
deadline will not be met and an exception may occur. Although this is a 
valid behaviour, this combination is not very useful and should be 
avoided. 

The timing on a channel or barrier stops when accept(..) or refuse(..) 
are used on the channel or barrier. 

Refuse communication and (optionally) throw exception 

System.refuse(channel, exception_message); 

System.refuse(barrier, exception_message); 

This method will let the environmental process refuse the acceptance of 
the communication event on the specified channel or barrier. If an 
exception message is specified then it will let the channel or barrier 
throw the exception message to the participating processes. If no 
exception message is specified then the channel or barrier will block the 
invoking processes until the environment is willing to accept the events. 

The refuse(..) method can be used to command the environment that an 
artificial refusal should be carried out. This method can be used for two 
main reasons: 

1. The application can be tested by deliberately refusing 
communication. This way the robustness of the application can be 
tested. 

2. In case the application deadlocks or livelocks then there is no way 
the program or a particular part of the program can terminate. In 
case the program deadlocks or livelocks, refuse(..) can be used 
to let channels or barriers throw exceptions. The exceptions will 
release synchronization and exception handling may gracefully 
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terminate the program. This is called poisoning a channel or a 
barrier (Section 3.5.1 and Appendix C.4). 

A UnacceptableException results if the environmental process cannot 
refuse events on the specified channel or barrier. 

Accept communication 

System.accept(channel); 

System.accept(barrier); 

The environmental process will accept any communication event on the 
specified channel or barrier. This will cancel any timing, as specified with 
at(..) or after(..), or any refusal that was specified with refuse(..). If 
a channel or barrier that was refused cannot be accepted then an 
UnacceptableException exception is thrown. The method will be ignored 
and returns when it was called before at(..), after(..), or refuse(..). 

Get the actual time 

long System.time(); 

Returns the absolute time read by the environmental timer. 

4.7.3 Thread services 

The csp.lang.Thread class in CTJ can delay the thread of control for a 
specified duration of time. The services offered by the csp.lang.Thread 
class are thread-oriented and therefore local to the process. This service 
does not involve channels or barriers. 

Thread.sleep(relative_time); 

Let the thread of control in a process sleep for the specified relative time. 



4.7 Timing and Sampling 

 

185 

Thread.sleepUntil(absolute_time); 

Let the thread of control in a process sleep until the specified absolute 
time. 

4.7.4 Example real-time timing 

In this Section, an example illustrates real-time sampling and actuation 
that are based on timed channels. 

Consider the two controller processes HController and LController as 
depicted in Figure 4-7. 

 

Figure 4-7 Control application consisting of a higher-priority 
controller process and a lower-priority controller 
process. 

The external channels d1 and d2 are timed on sample interval Ts1 and 
external channels c1, c2 and c3 on sample interval Ts2. The start time ts is 
some delay after which the program is completely instantiated. In the 
following code we create the external channels and assign them to the 
environmental process with specified start time and sampling interval. 
The sampling rate for HController is 1 kHz and the sampling rate for 
LController is 0.1 kHz. The start time is specified such that sampling 

LController 

c1@ts,Ts2 c2@ts,Ts2 c3@ts,Ts

 

HController 

d1@ts,Ts1 d2@ts,Ts1 

LController HController 

(a) Communication relationships 
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starts when everything is constructed, otherwise deadlines may be 
passed on start-up. 

//--- create external channels 

Channel_of_Integer d1 = new ADC(0); 

Channel_of_Integer d2 = new DAC(0); 

Channel_of_Integer c1 = new ADC(1); 

Channel_of_Integer c2 = new IncCounter(0); 

Channel_of_Integer c3 = new DAC(1); 

 

//--- set up sampling timing and register channels to environment 

long Ts1 =  1000; // in usec 

long Ts2 = 10000; // in usec 

 

long ts = System.time() + 100000; // start time 

 

// firstly the inputs 

System.at(d1, ts, Ts1); 

System.at(c1, ts, Ts2); 

System.at(c2, ts, Ts2); 

 

// secondly the outputs 

System.at(d2, ts, Ts1); 

System.at(c3, ts, Ts2); 

 

//--- create processes and compositional relationships 

... 

Listing 4-16 Creating timed-events using external channels. 

Although processes can read and write on these channels in parallel, the 
actual conversions will be performed in some atomic sequence by the 
timed interrupt service routine.  

Every registration with the same start time and sampling interval belong 
to the same atomic group and its order of execution is determined by the 
sequence of registration. See the sequence of at(..) statements in Listing 
4-16. The sequence of inputs and outputs will be sorted by its time stamp 
and when the time stamps are equal then the sequence is determined by 
the sequence of registration. Due to this constraint, the programmer can 
minimize conversion latencies by choosing an optimal order of 
registration. The implementation is omitted in this thesis. The link driver 
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framework takes care of sequencing on a timer interrupt. Link drivers act 
as interrupt handlers. 

This mechanism is illustrated using CSP diagrams, as depicted in Figure 
4-8 and in Figure 4-9. Figure 4-8 shows the communication relationships 
of both controllers with their input-output counterparts in hardware (the 
input/output bubbles in the grey rectangle). 

 

Figure 4-8 Controllers communicating with devices. 

 

In Figure 4-9a-c, the compositional relationships between these hardware 
inputs/outputs are rendered for different scenarios. This is the solution 
for using interrupt handling on the internal timer. Process LController 
has a lower sampling frequency (1/Ts2) than the sampling frequency 
(1/Ts1) of process HController, with Ts1 < Ts2. Thus, we specify that 
LController gets a lower priority than HController. 

The conversions are atomically performed by the devices. That is, they 
cannot be interrupted by the application. This is depicted by the atomic 
rectangles in grey. Processor interrupt mechanisms are sequential and 
mostly priority-based or preemption-based. This is depicted by the 
sequential relationship. The prioritized parallel relationship between the 
hardware processes and the software processes are enforced by this 
environment. 

HControl 

d1@ts,Ts1 d2@ts,Ts1 

LControl 
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Figure 4-9 Atomic sequence of inputs and outputs by the 
environmental process. 

This mechanism adapts to three scenarios, where: 

t = n.Ts1 = m.Ts2 ⇔ n.Ts1 = m.Ts2 

t = n.Ts1 and t ≠ m.Ts2 ⇒ n.Ts1 ≠ m.Ts2 

t = m.Ts2 and t ≠ n.Ts1 ⇒ n.Ts1 ≠ m.Ts2 

with variable t being the actual time and m,n ∈ [0,1,2,3,..] and Ts1 ≠ Ts2. 

(a) Compositional relationships on t = n.Ts1 = m.Ts2. 

(b) Compositional relationships on t= n.Ts1 and t ≠ m.Ts2. 

HController LController 
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Processes in hardware (environment) 
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(c) Compositional relationships on t ≠ n.Ts2 and t = m.Ts2. 
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Scenario 1: Figure 4-9a shows the scenario of two equal time stamps, 
namely n.Ts1=m.Ts2. Sampling and actuation are performed in a 
predefined sequence; the sampling and activation for HController is 
performed before the sampling and activation for LController. The 
sampling and activation of the HController has a low-pass character that 
will ensure that c1 and c2 are not influenced by d2. Furthermore, the delay 
between the first sampling and the last actuation is usually constant and 
small enough so that this does not affect the stability of the controlled 
system. A timing scheme is depicted in Figure 4-10. 

 

Figure 4-10 Timing scheme for HController and LController. 

Scenario 2: Figure 4-9b shows the situation when only time stamp ts1 is 
reached. A timing scheme is depicted in Figure 4-11. 

  

Figure 4-11 Timing scheme for HController. 

Scenario 3: Figure 4-9c shows the situation when only time stamp ts2 is 
reached. A timing scheme is depicted in Figure 4-12. However, in 
practice, Scenario 3 will never occur when frequencies are multiplicities. 
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Figure 4-12 Timing scheme for LController. 

In case all three scenarios are applied then there will be small variations 
(jitter) between the input and output conversions. In Figure 4-10, input d1 
is converted at ti and c1 at ti+∆T. In scenario 3, input c1 is converted at ti 
which is earlier than in scenario 1. Similar variations happen between the 
output conversions. These variations are very small compared to the 
timing interval. Since the parameters of a controller are a function of 
time, these variations may cause inaccurate values of the parameters. In 
case this has a significant and wrong effect on the behaviour of the 
controller (e.g. instability), one can choose scenario 1. In scenario 1, all 
conversions are performed at the highest frequency and variations are 
eliminated. Buffered processes are required to decouple the inputs and 
outputs from lower-frequent controllers. This scenario is depicted in 
Figure 4-13. 

 

Figure 4-13 Controllers communicating at different frequencies but 
with the same sampling and actuation frequency. 
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In this example, ts is the start time for the timer to start. The buffered 
processes B1 and B2 are sub-sampling and buffered process B3 is super-
sampling. Here, e1, e2, and e3 are additional timed channels required for 
sample interval Ts1. Ts2 is a multiplicity of Ts1. 

4.8 Conclusions 
The CT library offers a set of process-oriented design patterns or 
constructs for implementing concurrent software with object-oriented 
programming languages. These constructs allow true compositional 
programming of reactive software.  

The semantics of the proposed constructs are the building-blocks on 
which the user can build reliable and reasonable concurrent software. 
The concept of reasoning in terms of processes, channels, and barriers 
provide a logical separation of hardware dependent and hardware 
independent concerns. Multithreading is freed from the mind set of the 
user. 

The proposed constructs provide a systematic way of handling 
exceptions and timing in concurrent programs. The proposed solutions 
to timed events (i.e. timed channels and timed barriers) are more 
accurate than timed processes and this solution is useful for sampling 
and actuation in control systems. 

The aspects simplicity, portability, and generality are demonstrated in 
Chapter 6. See conclusions in Section 6.7. 





 

C H A P T E R 5 

Notion of priorities 
5 Notion of priorities 

5.1 Introduction 
Priority is meant as a solution for optimizing program execution in order 
to increase its reactivity and responsiveness. Priority specifies the 
importance or urgency between tasks concerning a shared resource to 
which some kind of precedence rule is applied. The precedence rule 
determines which task can precede the other task, since no two tasks can 
or are allowed to perform on the shared resource at the same time. At a 
low level of abstraction—devoted to the CPU and its threads of control, 
priority is seen as a scheduling parameter used by a scheduler. At a high 
level of abstraction—appropriate for the human mind—priority is an 
urgency or priority relationship between two event handling processes. 
This notion of priorities for the CT object model (Chapter 4) is defined in 
this chapter. The precedence rules are defined for the communication 
relationships in presence of compositional constructs. In order to get 
some trust in the efficiency of the CT libraries (Chapter 4 and 6) and CSP 
diagrams (Chapter 3), the scheduling policy is specified in this chapter. 
The implementation of the scheduler is not treated. 

The notion of priority relationships is discussed in Section 5.2. The 
scheduling policies of the equally-prioritized and unequally-prioritized 
parallel constructs are described in Section 5.3. Particular patterns of 
compositions and communications between processes can result in 
inefficiency problems such as the priority inversion problem (Lauer and 
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Satterwaite, 1979; Sha et al., 1990), is discussed in Section 5.4. The channel 
communication is burdened with the task to solve these problems in a 
way that determines the quality of service. This affects the scheduling of 
the communication primitives as described in Section 5.5. CT implements 
enhanced alternative constructs, which improves the performance of 
concurrent software with respect to fairness and real-time requirements. 
Alting with notion of priorities is discussed in Section 5.6. Its efficiency is 
briefly discussed in Section 5.7. Although output guards are forbidden in 
occam for safety and implementation reasons, CSP allows output guards 
and so does CT. Output guards are discussed in Section 5.8. Conclusions 
to this chapter are drawn in Section 5.9. 

The occam programming language (Inmos, 1988) is used to illustrate the 
listings, rather than using CTJ. Occam uses abbreviations for the 
compositional constructs, which keep the listings compact. The 
sequential construct is abbreviated as SEQ, the equally-prioritized 
parallel construct as PAR, the unequally-prioritized parallel construct as 
PRIPAR, the equally-prioritized alternative construct as ALT, and the 
unequally-prioritized alternative construct as PRIALT. 

5.2 Priority relationship 
In real-time systems, sporadic and periodic processes must be scheduled 
on a single CPU in order to meet their specific deadlines. Periodic 
processes in embedded systems may involve control loops, data 
acquisition, signal generation, etc. Sporadic processes may involve 
emergency buttons, safety switches, user interaction, etc. In any case, the 
process architecture as well as the run-time scheduling mechanism must 
be harmonized so that the total scheduling policy is able to guarantee 
that every deadline is met. Priorities are used to specify the scheduling of 
processes that are involved with some shared resource; e.g. a single CPU. 
More precisely, the threads of control within processes are scheduled. 
Processes do not know that they are scheduled. 
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Priority is defined as follows: 

Definition (priority): Priority is a relationship between two or more 
processes that defines a precedence rule that determines which process 
has the permission to claim a shared resource at run-time. 

Priority concerns the simultaneous use of a shared resource and the 
precedence rule only applies when a shared but exclusively used 
resource is involved. A shared resource can be a channel, a device, an 
object, memory, critical region, or a single processor. The precedence rule 
may require certain parameters, such as an index or time. These 
parameters concern the scheduling mechanism but they do not directly 
concern the user. Instead, the user is concerned with the fairness and 
unfairness of the system.  

Priorities indicate the relationship of importance between processes—the 
importance of one process is greater-than, lower-than, or equal-to another 
process in the process architecture. The difference or equality of 
importance between processes is called the priority relationship. Priorities 
are relevant when processes engage in events. Therefore, the 
interrelationships between processes specify the priorities and apply 
precedence rules in process architectures. Consequently, the 
communication and compositional relationships are priority 
relationships that compose the total priority policy of process 
architectures. The prefix PRI as in PRIPAR and PRALT or the arrow on 
top of the interrelationships  and , specify priority relationships to 
which the scheduling policy will adapt in the process architecture. A 
priority relationship between processes can be fixed or preferred. The 
latter may change in time when the context changes. 

Processes and events are unaware of their priorities and priorities are 
encapsulated in the execution of processes. Priorities are related to event 
handling. Event handling is the task that is executed by a process upon an 
event. Priorities may propagate via events from event handling to event 
handling. Communication and termination events perform the 
precedence rules.  
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5.3 Equally- and unequally-prioritized 
parallel constructs 

Real-time processes cannot meet their deadlines when they have to wait 
for lesser-urgent processes to complete for which the total processing 
time exceeds the maximal CPU time. The lesser-urgent processes must 
not consume more processor time than actually necessary. Ultimately, 
there should be enough CPU time for remaining non-real-time processes 
to meet their requirements. The equally- and unequally-prioritized 
parallel relationships are used to specify the priorities of execution in 
process architectures. 

Commonly, multithreaded programming interfaces consider priority as 
an index that can be assigned to each thread of control. A common policy 
in many operating systems is the lower the index, the higher the priority. 
Often, index 0 is the highest priority. The comparison between indexes 
expresses the priority relationship between the threads of control. Such 
explicit indexing of priorities has a global and absolute character. 
Consequently, the user must determine the absolute index values by 
global knowledge. The CSP constructs in this thesis abstract away from 
priority indexing and compose relative priority relationships between 
pairs of processes. The PAR and PRIPAR constructs assign separate 
threads of control with respectively equal and different priorities to its 
child processes. These priorities are relative between pairs of processes 
and local to the parent process. The PRIPAR is like a PAR construct with 
the additional property that the PRIPAR executes its child processes with 
declining priorities. The process on top of the process list gets the highest 
priority of all processes in the list. The highest priority is equal to the 
priority of which the parent process is executing. An example of 
declining priority relationships is given by the PRIPAR composition in 
Listing 5-1. 

 PRIPAR 

   Process1  -- priority 0 

   Process2  -- priority 1 

   PRIPAR   -- priority 2 

     Process3 -- priority 2.0 
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     Process4 -- priority 2.1 

   Process5  -- priority 3 

Listing 5-1 A nested PRIPAR construct. 

The PAR performs non-preemptive scheduling between competitive 
parallel processes. The PRIPAR performs preemptive scheduling. Non-
preemption allows scheduling to another process when the current 
process blocks or terminates. Preemption occurs on external 
communication events and lets a higher-priority process takes 
precedence over a lower-priority process. The lower-priority process can 
continue when the higher-priority processes have terminated or are 
blocked on communication. A composition of PAR and PRIPAR provides 
a composition between non-preemptive and preemptive scheduling that 
is optimal for the process architecture. With optimal is meant that 
context-switching is only performed when essentially required. 
Therefore, time-slicing is not part of the scheduling policy, but time-
slicing can be built by the following construct in Listing 5-2. 

PRIPAR 

 Timeslicer(time)  -- priority 0 

 PAR       -- priority 1 

  Process1    -- priority 1 

  Process2    -- pritoriy 1 

Listing 5-2 Time-slicing construct. 

The Timeslicer process contains a simple infinite WHILE loop with a 
sleep statement. The process repeatedly sleeps for the specified time and 
sleeps again after the time has expired. Each time the Timeslicer wakes 
up it will preempt the PAR construct and when the Timeslicer sleeps 
again it will reschedule the next process in the PAR construct. The PAR will 
alternately schedule its processes in a round-robin fashion—this is fair. 

The PRIPAR construct provides fixed-priority scheduling and is used to 
implement a rate-monotonic (RM) scheduling scheme (Sha et al., 1990). 
This scheme assigns priority to the execution of processes based on their 
periods. The rate is the inverse of the period; the shorter the period, the 
higher the priority. Rate-monotonic scheduling is common for control 
systems and many other classes of real-time systems. The priority 
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assignment is simple and its implementation is lightweight compared to 
dynamic-priority scheduling schemes, such as an early deadline first (EDF) 
scheduling scheme (Sha et al., 1990). Generally, control applications can 
be optimal scheduled using rate-monotonic scheduling and do not 
require a dynamic-priority scheduling scheme.  

The priority relationships of Listing 5-1 are graphically depicted in a CSP 
diagram in Figure 5-1. 

 

Figure 5-1 Example of a composition diagram of a nested PRIPAR construct. 

The precedence rules, as specified by these unequally-prioritized parallel 
relationships in this composition diagram, are applied on each 
communication event and termination event within this system. 
Preemption of lower-priority processes happens when a higher-priority 
process can proceed upon an event from an external channel or an 
external barrier. 

In composition diagrams (as in Figure 5-1) and in occam (as in Listing 
5-1) the priority relationships between processes are static. In CT, priority 
relationships can change at run-time by moving processes in the list of 
processes in the PRIPAR construct. See the methods add(..) and 
remove(..) in Section 4.6.1. For every change in the unequally-prioritized 
parallel relationship a separate composition diagram is required to 
express each change. 

5.4 The priority inversion problem 
Section 4.5.1 illustrates a technique to determine whether or not a process 
architecture is priority conflict-free. A priority conflict can increase the 
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performance of lower-priority processes at the cost of the performance of 
high-priority processes. This is known as the priority inversion problem 
(Sha et al., 1990). Sometimes a priority conflict seems to be inevitable. The 
solution offered here is a design refinement, which results in priority 
conflict-free designs. It deals with eliminating the source of the problem 
rather than fixing the problem by makeshift solutions. 

 

Figure 5-2 (a) priority inversion problem in design, 
(b) priority analysis shows priority conflict design, 
(c) priority inheritance in design, 
(d) priority analysis shows priority conflict-free design. 

Figure 5-2a illustrates an example of a priority inversion problem with 
processes and a channel c. Should a high-priority process (P1) be blocked 
on a channel, waiting for communication with a lower priority process 
(P2), it may have to wait a longer time than seems reasonable. A third 
process (P3) of middling priority might be hogging the CPU. The channel 
(shared resource between P1 and P2) causes the priority inversion 
problem. The network of processes seems to be conflict-free, but if one 
considers the communication between P1 and P2 as one communication 
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process Q then a priority conflict raises between the processes Q and P3. 
See the conflicting unequally-prioritized operators between Q and P3 in 
Figure 5-2b. The analysis technique to find priority conflicts is described 
in Section 3.8.4. In other words, at the moment of rendezvous a priority 
inversion problem raises. 

In order to do justice to the overall system performance, it would be 
reasonable to elevate the priority of P2 to the level of the blocked P1 when 
P1 gets blocked on the channel with P2. In other words, the lower-priority 
process inherits the priority of the blocked higher-priority process until 
the high-priority process can carry on. This solution is called priority 
inheritance (Lauer and Satterwaite, 1979; Sha et al., 1990). Figure 5-2c 
illustrates the effect of priority inheritance on the relationships. On 
priority inheritance, the priority relationships become different as was 
originally specified. This is also clarified in Figure 5-2d, which shows that 
the priority conflict is solved. Immediately after communication via the 
channel the priority will be restored to the lower-priority as was 
specified by the priority relationships, see Figure 5-2a. Here, priority is 
no longer static and can temporarily change in order to serve a higher-
priority process. The ceiling protocol provides a solution for transitive 
blocking (chain of blockings) (Cornhill et al., 1978). The ceiling protocol 
could prevent deadlock, but deadlock is a pathological problem of the 
process architecture and not a problem of scheduling. In addition, the 
inheritance and ceiling protocols are problematic for channel-based 
software architectures, since channels can only retrieve the priorities 
between processes on the moment when both threads of control enter the 
channel. The channel does not know a priori which processes (or threads) 
access the channel. 

Priority inversion comes from a bad design in the first place and the 
priority inheritance and the ceiling protocol are bad solutions to a bad 
design. From the point of view of a higher-priority process P1, the last 
thing it wants is the priority to be raised of another process P2. Priorities 
are set for a reason. This does not imply that priorities are static at all 
times. Priorities should be able to change by external influences in order 
to improve the performance of the program. The priorities that are 
initially set are called preference priorities.  
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A design pattern, which follows the following rule, can avoid the priority 
inversion problem. 

Do not communicate with a lower-priority process unless you do not have 
any real-time guarantees to deliver; otherwise, feel free to communicate 
with a lower-priority process (and maybe get blocked) if you currently have 
no real-time service commitments. 

This solution to solve priority inversion is different to priority 
inheritance, which follows the design pattern: 

Give the high-priority servicing process an equal-priority buddy process 
that has the only task to communicate with a lower-priority process. 

Thus, when a high-priority servicing process needs to communicate with 
a lower-priority process, get its buddy process to do it. The buddy 
process is listening out for the servicing process so the servicing process 
will not be blocked communicating with its buddy. The buddy may get 
blocked communicating with the lower-priority process but no matter 
the higher-priority process is still alive and servicing. The servicing 
process needs to remember not to communicate with its buddy until its 
buddy communicates back after dealing with the lower-priority process. 
If this is necessary, some more buddies are needed. The buddy process 
needs to be of equal-priority with the servicing process so that the buddy 
will succeed as soon as the low-priority process is ready to communicate 
with it so that it gets the attention of the servicing process when that is 
been done. 

This design pattern needs no priority rising, but the design must be 
refined with additional processes and handshaking between the higher-
priority process and the buddy process. A simplified refinement that 
overcomes the priority inversion problem is a buffer process that has the 
role of a buddy process as depicted in figure Figure 5-3a. The higher-
priority process writes to the buffer and can immediate continue without 
being blocked. After servicing the buffer process waits until the lower-
priority process consumes the message. 
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Figure 5-3 (a) Solution with buffer process, 
(b) sub-sampling buffered channel, 
(c) super-sampling buffered channel. 

A buffered data channel replaces a buffered process and additional data 
channels. Such an implicit buffer simplifies the CSP diagram. See Figure 
5-3b and Figure 5-3c. The buffer is a property of a data channel as a 
means to solve priority inversion problems. Figure 5-3b uses a sub-
sampling buffered data channel that overwrites values and Figure 5-3 
uses super-sampling which generates values that are equal to the last 
value that was written to the channel. In Appendix F, a proof is given 
that a sub-sampling or super-sampling buffered data channel can solve a 
priority inversion problem in case data channels cause priority conflicts. 

A buffered data channel may save context switches but at the same time 
it can decrease the reactiveness of the program. In CSP-based process 
architectures one can reason about where to place a specific kind of 
buffered data channel instead of a rendezvous data channel. This is also 
discussed in Section 3.8.5. One should start the design of a process 
architecture with rendezvous channels. From this point on one can refine 
the model with buffered channels with the right kind of buffer at places 
where a buffer does improve the throughput and does not decrease the 
reactivity and responsiveness of the system. 

The reverse approach, by starting a design with an asynchronous 
communication model, complicates the preservation of reactivity and 
economically using memory. In small computer systems memory can be 
scarce. Note that asynchronous behaviour does not solely come from 
buffered communication. Asynchronous behaviour is described by ALT 
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and PAR compositions (Roscoe, 1998; Welch and Bakkers, 1992). A 
buffered data channel is described as a CSP process with an ALT, a PAR, 
and an additional CSP channel (Roscoe, 1998). Furthermore, a deadlock-
free program with rendezvous data channels will be deadlock-free with 
buffered data channels. The reverse may not be true (Roscoe, 1998). 

Call channels and barriers are not buffered in CT since they require strict 
rendezvous. Solving the priority inversion problem with call channels 
and barriers is not as easy as with data channels. The process architecture 
should be designed such that it is free from priority conflicts. Method 
calls that do not return data can be buffered, but this is of no use when 
methods must be served in a strict sequence. Processes that participate in 
the barrier should have equal priorities. 

5.5 Scheduling of communication 
primitives 

To give some insight and trust in the scheduling policy of the CSP-based 
synchronous communication model, the scheduling policy on data 
channels, call channels, and barriers are described in this section. 

5.5.1 Scheduling of data channels 

Hoare (1974; 1985) suggests that the order of scheduling of processes on a 
channel should be fair according to a first-come-first-served policy. Figure 
5-4 illustrates an example of fair scheduling on a channel in steps from  
to  in an equally-prioritized parallel relationship. Ignore the unequally-
prioritized operator on the compositional interrelationship in the figure 
for now, which will be discussed later. 

In Figure 5-4a, the writer process is first to write on the channel c and it 
gets blocked until the reader comes along to read the data from the 
channel. After communication the channel schedules the writer process 
first. This is similar for Figure 5-4b where the reader is first to reclaim the 
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channel and continues before the writer. For each channel 
communication two context-switches are performed. 

 

Figure 5-4 Rendezvous and first-come-first-served scheduling: 
(a) writer first. 
(b) reader first. 

In systems with frequent channel communications and small 
computations, the total amount of context-switch time can consume a 
significant amount of processor time. A control system, where control 
loops continuously input and output on internal and external channels, is 
such a class of system. The performance can be significantly improved by 
a scheduling policy that eliminates one context-switch per channel 
communication, while preserving its reactivity. This scheduling policy is 
based on a last-come-first-served policy as illustrated in Figure 5-5a and 
Figure 5-5b, which has been adopted in CT. The improvement relates to 
the entire program and not to individual processes. 

In Figure 5-5a the writer process is first to write on the channel and it 
gets blocked until the reader comes along to read the data from the 
channel. After communication the channel lets the current thread of 
control continue; thus the reader process will be scheduled first and the 
writer process will be scheduled at a later time. See the steps  to . 
This is similar for Figure 5-5b where the reader process is first and the 
writer continues before the reader. For each channel communication one 
context-switch is performed. Cyclic processes will alternatively read and 
write on channels which do not defect the reactive behaviour of the total 
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architecture. In periodical control processes this is always the case. For 
example, if the processes in Figure 5-5 are cyclic executing and 
repeatedly read or write on the channel then the behaviour alternates 
between Figure 5-5a and Figure 5-5b. 

 

Figure 5-5 Rendezvous and last-come-first-served scheduling: 
(a) writer first,  
(b) reader first. 

In case the writer and reader processes have different priorities, the 
scheduling policy falls back to the policy as described in Figure 5-4. In 
this case, consider the unequally-prioritized relationships on the 
compositional interrelationships. 

Shared data channels apply the first-come-first-served policy between 
multiple writers and readers of equal priorities and it applies highest-
priority-first policy for multiple writers and readers of unequal priorities. 

5.5.2 Scheduling of call channels 

The scheduling policy of a client-server relationship with equal priorities 
is illustrated in steps from  to  in Figure 5-6. No matter which process 
accesses the call channel first, after communication the client (or caller) 
continues before the server, we call this the caller-first policy. The caller-
first policy is an optimal solution in a run-to-completion execution 
framework, like in programs written in Java or C++. Hence, step  is 
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always performed by the caller’s thread of control. Although, the policies 
of data channels and call channels differ, but the rendezvous concept 
remains equal. 

 

Figure 5-6 Rendezvous and caller-first scheduling: 
(a) client first, 
(b) server first. 

The scheduling policy of a client-server relationship with equal priorities 
is illustrated in steps from  to  in Figure 5-7. 

 

Figure 5-7 Rendezvous and highest-priority--first scheduling: 
(a) client first, 
(b) server first. 

As with shared data channels, a first-come-first-served queuing policy 
between multiple clients and servers with equal priorities is applied for 
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shared call channel. Once a client and server are committed to 
communication on a shared call channel, the caller-first policy applies. 
Multiple clients and servers are scheduled with unequal priorities are 
scheduled with the highest-priority-first policy. 

5.5.3 Scheduling of barriers 

The scheduling of processes that participate in barrier synchronization is 
a combination of a last-come-first-served policy and a first-come-first-
served policy. The last-come-first-served policy applies for the last 
process that participates in the barrier synchronization. The thread of the 
last process invokes the parallel process at a lower layer. See the process 
with parallel sub-processes A, B, C and D in Figure 5-8 (step ). 

 

Figure 5-8 Rendezvous of a barrier synchronization primitive. 
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Each sub-process is provided by a participating process respectively P, Q, 
R, and S. After the lower-layer process is performed, the first-come-first-
server policy is applied that schedules the other three participating 
processes in that order. When the processes P, Q, R, and S are cyclic then 
the policy rotates. 

The barrier scheduling policy is the same as for the PAR construct that is 
applied when it releases its parallel processes at termination. Hence, the 
PAR construct is also a barrier construct. The PRIPAR also performs a 
barrier. 

5.6 Alting with notion of priority 
The run-time environment of software is deterministic and therefore the 
software must specify the appropriate deterministic decisions. Decisions 
can be fair or unfair. A fair decision is made with respect to previous 
decisions the mechanism has made. An unfair decision can be any 
decision that is not a fair decision. In this section we present the ALT as a 
fair alternative construct and the PRIALT as an unfair alternative 
construct. This criterion is based on local priorities between guards. 

In circumstance where surrounding priorities are involved, the 
alternative constructs must be fair and serve the alting process with 
highest priority first. This precaution guarantees that the priorities of 
guards do not cause priority inversion problems that likely decrease the 
overall performance of process architecture. 

Two types of alting are discussed, namely resolute alting and preference 
alting. Resolute alting is known in occam and preference alting is an 
improved approach that is proposed in this thesis. This section will show 
that preference alting is superior to resolute alting. Preference alting has 
been adopted in CT. 
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5.6.1 Resolute alting versus preference alting 

In occam the ALT and PRIALT constructs are identical in that they share 
the same PRIALT implementation. The ALT and PRIALT 
implementations are unfair choice constructs, i.e. declining priorities are 
assigned to the guards. The ALT should have been a fair choice construct 
as suggested by Roscoe (1987). Listing 5-3 illustrates this fair choice 
construct based on a PRIALT with the use of conditional input guards. 
This is what the occam’s ALT should have been, but unfortunately this 
fair alting implementation is difficult to realize on the transputer. In this 
thesis, the ALT refers to Listing 5-3 so that the ALT represents a fair 
choice construct and the PRIALT an unfair choice construct. 

SEQ 

 PRIALT 

  (i ≤ 0) & g0 
   j = 0 

  (i ≤ 1) & g1 
   j = 1 

  ... 

  (i ≤ n-2) & gn-2 
   j = n-2 

  gn-1 

   j = n-1 

  (i > 0) & g0 

   j = 0 

  (i > 1) & g1 

   j = 1 

  ... 

  (i > n-2) & gn-1 

   j = n-2 

 CASE j 

  0 

   P0 

  1 

   P1 

  ... 

  n-2 

   Pn-2 

  n-1 

   Pn-1 

 i = (i+1) mod n 

Listing 5-3 Fair alternative construct with conditional input guards. 

Here, gi is a guard and the CASE performs branches to the process Pi. 
Index i is the priority parameter used by the preference rule that is 
expressed by the conditional guards. The conditions provide a fair 
priority ordering among the guards. The fairness criteria used is that the 
guards are cyclic prioritized with the guard chosen last time getting 
lowest priority next time. This will be interpreted as if the guards under 
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the ALT have equal priority. This solution guarantees that no guard can 
be activated twice while there is another one waiting. A slightly simpler 
solution of a fair ALT is given by Lau and Shea (1988) using occam 2, 
which is basically the same as the one above. 

The prioritized choice of the fair ALT as described by Roscoe (1987) and 
the PRIALT as described by Lawrence (1998) are isolated to the 
alternative process. This implies that the decision is not completely 
externally influences. The implementations of the ALT and priority-
ordering of the PRIALT are basically cyclically (non-busy) polling 
mechanisms that test the readiness of each guard in a cyclic fashion 
(Barrett et al., 1988). These decision mechanisms are focused on the local 
priorities of its guards and not on the priorities of its alting processes. We 
call this type of alting resolute alting. In this section we will refer to the 
fair ALT as described by Roscoe and not to the occam ALT which is 
equal to the PRIALT. 

An unfortunate mapping between the local priorities of the guarded 
processes in a PRIALT construct and the priorities of the alting processes 
in a PRIPAR construct can cause a priority mismatch (Burns, 1987; 1990). 
This mismatch results in a performance penalty. In circumstances where 
the priority of a process is changing (e.g. due to the use of deadline-
driven scheduling or priority inheritance), the use of a static mapping 
would no longer be adequate. In this case, even the fairness of the ALT 
can become unfair when the wrong choice has been made and a lower-
priority client process is served before a higher-priority client process. 
For real-time applications these problems can have a significant burden 
on the deadlines. Therefore resolute alting is not optimal for real-time 
software. A solution is to adapt the decision mechanism in such a way 
that it uses preference priorities of its guards. Preference priorities are 
locally set in the alternative process and they adapt to the surrounding 
priorities of the alting processes. Important is that the priorities of the 
alting processes should dominate over the priorities of the guards. Burns 
(1987; 1990) calls this type of alting preference alting. 

The choice of resolute alting is not completely externally influenced and 
this is in contradiction to the fact that they represent the external choice 
operator in CSP; meaning that the choice can be externally influenced. 
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The problem of resolute alting will be illustrates in the next examples in 
Listing 5-4a-d. Preference alting is explained as a solution that is suitable 
for real-time systems. 

PAR 

  c2!a     -- P1 

  c1!b     -- P2 

  FOR 0 TO 1 

    ALT    -- P3 

      c1?x 

        P(x) 

      c2?y 

        Q(y) 

(a) 

PAR 

  c2!a     -- P1 

  c1!b     -- P2 

  FOR 0 TO 1 

    PRIALT -- P3 

      c1?x 

        P(x) 

      c2?y 

        Q(y) 

(b) 

PRIPAR 

  c2!a     -- P1 

  c1!b     -- P2 

  FOR 0 TO 1 

    ALT    -- P3 

      c1?x 

        P(x) 

      c2?y 

        Q(y) 

(c) 

PRIPAR 

  c2!a     -- P1 

  c1!b     -- P2 

  FOR 0 TO 1 

    PRIALT -- P3 

      c1?x 

        P(x) 

      c2?y 

        Q(y) 

(d) 

Listing 5-4 Scheduling behaviour of alting; 
(a) PAR – ALT composition, 
(b) PAR – PRIALT composition, 
(c) PRIPAR – ALT composition, 
(d) PRIPAR – PRIALT composition.  

ALTing in the presence of a PAR. 

Listing 5-4a illustrates an ALTernative process communicating with two 
alting processes in parallel. The PAR executes its processes in a cyclic 
fashion and starts with the first process in the list of processes. Process P1 
outputs on channel c2, process P2 outputs on channel c1, and process P3 
alternates two times to serve both alting processes. The PAR starts with 
process P1. Due to the deterministic behaviour of the PAR we assume that 
P1 and P2 are waiting for communication when the ALT is executed. 

The trace of communication in this example will be <c1,c2> and this 
sequence is determined by the cyclic selection mechanism of the ALT. 
The execution order of the guarded processes is 
( ) ( )1? ( ) ; 2? ( )c x P x c y Q y→ → . The selection fairly alternates between the 
two guarded processes P(x) and Q(y). This behaviour is exactly 
according to our expectation. This description applies for a resolute ALT 
and for a preference ALT since they behave equally under the PAR. 
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PRIALTing in the presence of a PAR 

Listing 5-4b illustrates a PRIALTernative process communicating with 
two alting processes in parallel. The PAR starts with process P1. The trace 
of communication will be <c1,c2> and this sequence is forced by the 
selection mechanism of the PRIALT. The execution order of guarded 
processes is ( ) ( )1? ( ) ; 2? ( )c x P x c y Q y→ → . This behaviour is exactly 
according to our expectations. Note that the PRIALT under the PAR gets 
close to the behaviour of the ALT considering the random arrival times on 
which alting processes access the channels. Again, this description 
applies for a resolute ALT and for a preference ALT since they behave 
equally under the PAR. 

ALTing in the presence of a PRIPAR 

Listing 5-4c illustrates an ALTernative process communicating with two 
alting processes with different priorities. The PRIPAR executes its 
processes in a preemptive fashion and starts with the first process in the 
list of processes. The PRIPAR starts with process P1. With a resolute ALT, 
the trace of communication will be <c1,c2>, whereby P2 is served before 
P1. The resolute ALT determines the sequence of this trace. By looking at 
the urgencies of the alting processes P1 and P2, we would expect that 
process P1 should be served (read) before process P2, because P1 has more 
important things to do. The resolute ALT starts with checking the first 
guard and therefore it will serve P2. The resolute ALT will check the 
second guard first on the second run, this time P1 will be served, but then 
this can be too late for P1 to meet its deadline. The desired trace of 
communication should be <c2,c1>, whereby P1 is served before P2. This 
sequence must be forced by the PRIPAR. The preference ALT is exactly 
doing this. The preference ALT will determine the priority order of its 
guards based on the priority of the alting processes under a PRIPAR. 
Thus, in Listing 5-4c the priority ordering of the guards will be 
determined by the priorities of the alting processes. With preference 
alting, the trace will be <c2,c1>. 
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PRIALTing in the presence of a PRIPAR 

Listing 5-4d illustrates a PRIALTernative process communicating with 
two alting processes with different priorities. With a resolute PRIALT the 
trace of communication will be <c1,c2>. This is not an optimal trace, 
because P1 has a higher priority than P2 and therefore P1 should be 
served before P2. The preference PRIALT will adapt its decision to the 
urgency of its surrounding client processes and therefore the trace of 
communication will be <c2,c1>. Thus, the sequence of the trace is 
primarily determined by the PRIPAR. This is the optimal trace that is 
desired. Remarkably, a resolute PRIALT is known as an unfair ALT, but 
the preference PRIALT adapts its behaviour to the priorities of the 
surrounding client processes and becomes fair. 

5.6.2 Preference alting implementation 

The mechanism of preference alting is briefly discussed in this section. 
Both the preference ALT and preference PRIALT are based on the same 
mechanism. The difference between these ALTs is that the ALT assigns 
equal priorities to its guards and the PRIALT assigns declining priorities 
to its guards; as they were resolute ALTs. These priorities are so-called 
preference priorities which are preferred by the alternative process. 
However, these priorities can be overruled by surrounding priorities that 
are specified by unequally-prioritized parallel relationships between the 
alting processes. Equally-prioritized parallel relationships do not 
overrule the priorities of the guards and thus the priorities of the guards 
are applied to the choice mechanism. The basic idea is the same as for a 
shared channel with multiple writers that are communicating with a 
single reader. A communication diagram is given in Figure 5-9a. We omit 
multiple readers for the moment. 
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Figure 5-9a-b Alting on an any-to-one channel. 

All processes P1, P2, P3 and P4 run in parallel. The figure shows an 
imaginary queue annotated to the channel. This queue stores the threads 
from the blocking writers on the channel. The thread on front (the right 
side) of the queue claims the channel and it is the first one to be released 
after communication with the reader. The order is determined by a 
prioritized sorting algorithm. After every release the queue is resorted. 

The sorting algorithm implements two sorting policies. If the writers 
have the same priority then they will be queued in a first-come-first-served 
order, because this is fair with respect to their arrival time. Otherwise 
they are queued according to their relative priorities, namely highest-
priority-first, because this is fair with respect to the specified priorities. 

In Figure 5-9a, the processes P1, P2, P3, and P4 execute with equal 
priorities and assume that the arrival time on the channel is P2, P3 and P1. 
Consequently, these processes are queued in that order; P2 followed by 
P3 and P3 followed by P1. Process P4 will serve P2. 

In Figure 5-9b, the processes P1, P2, and P3 execute with unequal 
priorities. Writer P1 has the highest priority, writer P3 has the lowest 
priority, and the priority of the writer P2 is somewhere in the middle. The 
reader process P4 runs in parallel to the writer processes. The sorting 
algorithm will store the process in order of priority whereby the highest 
priority process will be stored in front of the queue. Thus, if process P3 is 
the first process waiting on the queue for the reader and when P1 comes 
along, then process P1 will take the place of P3 and P3 will be the next 
element in the queue. Thus, a process will be released in prioritized 
order. The reader will serve P1 first since it has the highest priority of all 
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other waiting processes. The channel will adapt its alting queue to any 
changes in priorities of its alting processes. This is fair.  

The reader side of the channel has a similar prioritized queue for 
multiple readers. Multiple readers accessing a shared channel 
simultaneously are rarely applied since the race condition between the 
readers can give unpredictable or undesired results. A design tool could 
warn the user for race conditions in the design. 

The preference alternative process uses the same idea as with any-to-any 
channels. The previously described prioritized queuing policy for any-to-
any channels is equivalent to the queuing policy for preference alting. 
The semantics, properties, and behaviour of any-to-any channels and 
preference alting are discussed in Appendix E. In CT, the guards are 
stored in the alting queue instead of the threads of alting processes. The 
alting queue is a linked-list of guards. Each guard can be chained to other 
guards and created a queue in which guards can easily be added, 
removed, or moved. Also, each guard in the queue has reference to its 
associated guarded process. The behaviour of the ALTs automatically 
adapts to every new situation. This includes dynamic scheduling. In 
circumstances whereby the priority of alting processes changes, while 
some guards are already on the alting queue, the selection may not be 
adequate. It is necessary to reorder alting queues on every change of 
unequally-prioritized parallel relationships. 

5.7 Efficiency 
The efficiency of CT depends on the optimization of all the queues. These 
are the waiting queues, ready queues, and alting queues. All these 
queues are prioritized in one way or the other. 

5.7.1 Waiting queues 

Semaphores and monitor constructs are commonly used to synchronize 
threads (Brinch-Hansen, 1972; Dijkstra, 1965; Hoare, 1974; Silberschatz 
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and Galvin, 1994). Semaphore and monitor constructs are integral part of 
the CSP constructs, channels, and barrier implementations. These 
synchronization constructs maintain one or more waiting queues. These 
waiting queues function as the alting queues in channels. These queues 
are efficiently implemented as a prioritized link-list mechanism 
performing both the first-come-first-served and highest-priority-first 
sorting policies. 

5.7.2 Ready queues 

The scheduler has a ready queue of processes waiting to be scheduled by 
the dispatcher. The prioritized sorting algorithm of the ready queue is 
based on recursive index-table technique (Labrosse, 1992). This technique 
takes two steps to point the right ready queue for storing a pointer to a 
process thread that is ready to execute. Each PRIPAR creates its own set 
of ready queues and every PAR assigns a process thread for each process 
to the ready queues of nearest surrounding PRIPAR construct. The idea 
of nesting is similar as with a nested alternative construct. Every PRIPAR 
creates a separate scheduler that is scheduled by its parent PRIPAR 
construct. The result is an advanced nested scheduler. Nesting of static 
and dynamic schedulers is possible and this is an interesting topic for 
further research. A PAR construct that has no parent PRIPAR becomes a 
PRIPAR with a PAR as its first and highest priority process in the 
program; otherwise the kernel is not setup and no threads can be 
scheduled. 

5.7.3 Alting queues 

The prioritized alternative implementation maintains a separate alting 
queue as a linked-list of guards. The queuing mechanism supports input 
guards, output guards, call guards, accept guards, timeout guards, skip 
guards, and nested ALTs. The implementation is reasonably efficient for 
a number of reasons: 
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• The entire implementation is divided in simplified objects. Most 
of the algorithm is performed by the alting queuing object, 
which performs sorting of a linked-list of guards in prioritized 
order. The guard objects allow nesting of other guards and 
implements a few simplified recursive methods. The ALT 
construct is a guard itself and inherits the implementation of the 
guard. The channels also carry out bits of the implementation 
only when the channel is part of a guard and only when a 
process reads/accepts or writes/calls on a channel. 

• Each PRIALT holds an alting queue. The ALT uses the alting 
queue of a surrounding PRIALT. Therefore, the overhead of 
sorting of the alting queue scales with the sum of nested 
PRIALTs. Exceptionally, if there is no surrounding PRIALT then 
the root ALT will always create a root alting queue. 

• When comparing the CT implementation with the code of the 
transputer-based implementation then we can conclude that:  

o The worst case of the sorting algorithm for each PRIALT is 
the same worse case as for the algorithm of the transputer-
based implementation.  

o Adding guards to the queue, removing guards from the 
queue, and moving guards in the queue as a result of 
sorting, are the additional overheads compared to the 
algorithm of the resolute ALTs. These queue 
manipulations are just a few pointer assignments. 

Last but not least, the fairness that can be achieved by preference alting is 
expected to have a greater effect on the performance than the latency of 
sorting. This statement should be studied in future research. 

5.8 Output guards 
As a consequence of the queuing mechanism, the alternative constructs 
are flexible enough to support output guards. In this research output 
guards are investigated since CSP supports them. Output guards are 
discussed in this section and can be used to simplify a design. 
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5.8.1 Alting disagreement 

Jones (1987) describes that if each process tries to communicate by a 
conditional communication then they must both make the same decision 
about whether they want to communicate. Any attempt to make the 
decision independently at each process is likely to lead to a 
disagreement, especially for ‘truly’ concurrent or physically separated 
processors. This is called the alting disagreement problem. For example, 
Listing 5-5 illustrates a scenario with two communicating alting 
processes (performing conditional communication at each end of a 
channel) that will never commit in communication. 

PAR 

 ALT 

  chan!x     -- write x value to chan 

   P()     -- perform process P 

  ... 

 ALT 

  chan?y     -- read y from chan 

   Q(y)     -- perform process Q 

  ... 

Listing 5-5 Alternative disagreement. 

A solution is imposing restrictions on the way in which conditional 
communications can legally be used in programs. The restriction adopted 
in occam is to ensure that no pair of conditional communications ever 
meet. Whenever a pair of communications matches, at least one is 
guaranteed to be unconditional. Jones shows that the restriction of 
eliminating output guards and allowing input guards is sufficient; 
programming without input guards is less natural than programming 
without output guards. This means that in each pair of communicating 
processes there is an output, which is necessarily unconditional. He 
illustrates that each output guard can be replaced by a communication 
pattern with an input guard. Listing 5-6 shows an example of three 
processes in parallel, i.e. Process1, Process2, and Process3. Process1 is the 
alternative process and Process2 and Process3 are the alting processes. 
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PAR 

 ALT       -- Process1 

  chan1!x     -- output guard 

   P() 

  chan2?y 

   Q(y) 

 SEQ       -- Process2 

  chan1?z 

  S(z) 

 SEQ       -- Process3 

  chan2!w 

  T() 

Listing 5-6 Example with an output guard. 

In occam, the output guard (chan1!x) is forbidden and therefore this 
example must be transformed into Listing 5-7. An additional request 
channel is required to trigger the guard. The associated alting process 
Process2 must agree with the protocol of first outputting a request on 
chanx and then reading the object from chan1. 

PAR 

 ALT       -- Process1 

  chanx?request  -- request first 

   SEQ 

    chan1!x 

    P() 

  chan2?y 

   Q() 

 SEQ       -- Process2 

  chanx!true   -- perform request 

  chan1?z 

  S(z) 

 SEQ       -- Process3 

  chan2!w 

  T() 

Listing 5-7 Example with only input guards. 

This workaround calls for an additional channel and an expansion of the 
communication protocol. In legal circumstances, an output guard may 
simplify the design and the result is likely to be faster than applying a 
workaround with an input guard. Instead of imposing restrictions, as 
suggested by Jones, another solution is to allow output guards when it 
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suites best. The above mentioned alting disagreement problem should be 
detected by tools before run-time and results in an error message. 

The workaround is a source for an extra priority inversion problem when 
the alternative process has a lower priority than its alting processes. 
Listing 5-8 shows the example of Listing 5-7 with the alting process 
executing at a higher priority than the alternative process. Process 
Process4 executes at an intermediate priority and it could preempt 
Process3. We assume that Process3 gets enough time to perform since the 
whole system should obey the real-time requirements. 

PRIPAR 

 PAR 

  SEQ      -- Process2 

   chanx!true  -- perform request 

   chan1?z 

   S(z) 

  SEQ      -- Process3 

   chan2!w 

   T() 

 SEQ       -- Process4 

  ... 

 ALT       -- Process1 

  chanx?request  -- request first 

   SEQ 

    chan1!x 

    P() 

  chan2?y 

   Q() 

Listing 5-8 Priority inversion problem with alting and input guard. 

This example suffers from a double priority inversion problem on the 
channel input and on the channel output. Buffering chanx may solve the 
first priority inversion problem, but due to preemption between 
chanx?request and chan1!x, the buffer in chan1 will be empty and it will 
block Process2. A super-sampling buffer could be useful, but then the 
request signal has no useful function. 

Listing 5-9 illustrates a single priority inversion problem with the use of 
an output guard. Channel chan1 could contain a super-sampling buffer to 
solve the priority inversion problem. 
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PRIPAR 

 PAR 

  SEQ      -- Process2 

   chan1?z 

   S(z) 

  SEQ      -- Process3 

   chan2!w 

   T() 

 SEQ       -- Process4 

  ...other process with intermediate priority 

 ALT       -- Process1 

  chan1!x 

   P() 

  chan2?y 

   Q() 

Listing 5-9 Priority inversion problem with alting and output guard. 

A buffered channel chan1 makes the guard (i.e. chan1!x) initially true and 
P() may be selected even when the higher-priority process did not read 
from the channel. The guard could always be true and this could be an 
unwanted behaviour. Adequate buffer synchronization can prevent that 
the alternative construct never synchronizes on an output guard. For 
example, a super-sampling buffered data channel should make its output 
guard true after it was read at least once by the alting process; otherwise 
the guard should be false since the previous value was not consumed. 

5.8.2 Alting agreement 

Output guards come with limitations in design and implementation and 
they should be applied carefully. The graphical modelling language as 
described in Chapter 3 can protect the user from the alting disagreement 
problem as described in Section 5.8.1. The design tool could select the 
right type of buffering for channels to solve priority inversion problems. 

With the current alting queuing mechanism, it is foreseen that the 
implementation can be extended in such a way that it can solve the alting 
disagreement problem for internal data channels and call channels. For 
external data channel communication this is more complicated and 
requires additional handshaking over the hardware link. This extension 
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has not been implemented since CT is kept compact and efficient. 
Certainly, this is a subject for further research.  

5.8.3 Model checking and priorities 

CSP abstracts away from priorities and the model-checker FDR (2004) 
cannot perform a performance analysis based on priorities. The PRI has 
no meaning in CSP. FDR can still be used to determine if the program is 
deadlock-free simply by removing the PRI; i.e. → . Priorities makes 
choices determinism and it reduces event traces to particular sequences 
of events which represent the best reactivity or responsiveness. A 
performance analysis tool can check these event traces whether an 
optimal sequence of events is achieved, or whether the program suffers 
from starvation or other performance problems. 

5.9 Conclusions 
CT implements a task scheduling mechanism, which makes the library 
suitable for embedded real-time software. The efficiency of scheduling is 
determined by the design of the process architecture. The scheduling 
policy is composed by the compositional relationships. 

Data channels can be buffered in circumstances where a rendezvous data 
channel is a source for a priority conflict. Sub-sampling or super-
sampling buffered data channels can solve the problem in an elegant 
way. Buffered call channels and buffered barriers are not supported. 
Priority conflicts must be solved by correcting the design by buddy 
processes that unblock any higher-priority processes. 

Communication between multiple readers and/or writers via an any-to-
any channel has equivalence with alternative constructs. The fair 
scheduling policy that applies to any-to-any channels should also apply 
to the alternative process. Not surprisingly, the queuing implementations 
of the ALT have strong similarities with the queuing implementation of 
the any-to-any channel. The PRIALT is a specialization of the ALT 
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providing a particular unfairness between competitive alting processes, 
i.e. having equally-prioritized parallel relationships. 

Preference alting contributes to a better performance than resolute alting. 
Preference alting allows priorities to propagate over events. This way, 
alternative constructs can make efficient decisions, which are influenced 
by the surrounding priorities between alting processes. Important is that 
any inadequate mapping between an unequally-prioritized parallel 
construct (PRIPAR) and an unequally-prioritized alternative construct 
(PRIALT) is corrected by the preference alting. Preference alting and 
preference priorities provide the ability of dynamic scheduling. The 
ability of preference priorities allows a CSP-based program to schedule a 
static process architecture in a dynamic way in order to achieve optimal 
performance. The notion of preference priorities will determine time-
critical paths of event handling processes. By observing those paths of 
event traces and event handling processes one can reason about the 
length and deadlines of those paths. Timing analysis has not been 
described and may require further research. 

The implementation of the preference ALT constructs in CT supports 
output guards. Output guards can be used to simplify a design. One 
should keep the alting disagreement problem in mind to ensured safety. 
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6 CSP concepts applied to control systems 

6.1 Introduction 
The applicability of the proposed methodology for control applications 
and embedded computer systems is illustrated in this chapter. Several 
applications are discussed to which CSP diagrams, CTC or CTC++ was 
applied. It is shown that this methodology offers a concurrency 
paradigm that has the ability to manage complexities in control software. 

Two low-cost DSP-based embedded computer systems are discussed in 
Section 6.2, to which CTC and link drivers were applied. In Section 6.3, a 
test bed is briefly discussed for which the application, written in CTC++, 
is portable between platforms. CT for the PC architecture is discussed in 
Section 6.4. It is applied to two mechatronic systems: ARTY and JIWY. 
ARTY is discussed in Section 6.5 and JIWY is discussed in Section 6.6. 
Conclusions are drawn in Section 6.7. 

6.2 20-Controller 
There are ways to create transputer-like embedded computer systems 
based on heterogeneous CPUs (other than transputers). These systems 
benefit from the CSP paradigm. For this research, two different low-cost 
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embedded computer boards were used: one equipped with OS-links 
(transputers class links) and one equipped with a CAN bus (common 
field bus in industry). This initiative was called 20-Controller. The suffix 
“20” is the abbreviation for “Twente” (refers to the University of Twente) 
and “Controller” denotes that the board was made to perform a variety 
of control applications. These embedded computer systems were 
programmed with CTC or CTC++ and these systems inherit the 
scalability and distribution of transputer technology. 

OS-links 

A low-cost processor board, based on the Texas Instruments TMS320F240 
low-cost 16-bit fixed-point DSP, has been developed for educational 
purposes and demonstrations (Lahpor, 1998). The board was specially 
developed to be able to distribute a concurrent controller application 
over multiple 20-Controllers using external links. The concept was based 
on a transputer-based architecture of heterogeneous processors. See 
Figure 6-1. 

 

Figure 6-1 Network of 20-Controllers via transputer links. 

Each 20-Controller has 3 OS-links (i.e. transputer links according to the 
IEEE 1355 standard) implemented on an FPGA. Each OS-link establishes 
a reliable connection with another 20-Controller. OS-links represent 
rendezvous channels in hardware. Channel communication via OS-links 
is deterministic and can guarantee hard real-time requirements. 
Unfortunately, only one 20-Controller was built and thus the OS-links 
were not used. The 20-Controller is shown in Figure 6-2. An additional 
USB link was intended for configuring and monitoring the board via a 
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workstation. For this feature, a footprint larger than the one 
implemtented on the prototype board is required. 

 

Figure 6-2 The 20-Controller prototype based on a TMS320F240 DSP. 

The processor is optimized for digital motor/motion control applications 
and has some I/O-functionality integrated on chip for this purpose. 20-
Controller is equipped with external devices to increase its applicability 
for the larger variety of motor control applications, which are necessary 
for the student practicum. 

CTC was ported to the TMS320F240 and for almost every device on the 
20-Controller a link driver was made (van Drunen, 2000). Link drivers 
were plugged into data channels so that processes can communicate with 
the hardware via data channels. The methodology provided guidance, 
which is imposed by the CSP concepts and CT for developing embedded 
real-time software in a sound and systematic way. The distinction 
between processes, channels, compositional constructs, and link drivers 
helped a great deal in separating concerns and simplifying the code 
structures and the documentation. Once the link drivers were created, 
one could entirely focus on the implementation of the application rather 
than on the platform-specific technical difficulties or thread 
synchronization. The methodology managed complexities by separating 
concerns and simplification. This simplification decreased the 
development time of the software without being an expert in 
programming embedded systems. 
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CAN bus 

The laboratory of Control Engineering was sponsored with ADSP-21992 
processor boards by Analog Devices. See Figure 6-3. These embedded 
processor boards are equipped with a CAN bus (Bosch, 2003; ESD, 2003) 
which is commonly used as a field bus in industry. 

 

Figure 6-3 The 20-Controller prototype based on a ADSP-21992 DSP 

The CAN network is used to distribute control applications on different 
embedded processor boards. An example is depicted in Figure 6-4. CTC 
and later CTC++ have been ported to the ADSP-21992 on 160 MHz (Orlic 
et al., 2003). CAN link drivers have been developed which implement 
channels via the CAN bus. 

 

Figure 6-4 Network of 20-Controllers via a CAN bus. 
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6.3 MIMO-OFDM test bed 
At the laboratory of Systems and Signals, CTC++ was ported to the 
TMS320C6711 DSP architecture. CTC++ was used to implement a CSP-
based processing architecture for a flexible Multiple Input Multiple 
Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) 
test bed (Cronie et al., 2003). High-priority processes had to perform hard 
real-time tasks (taking advantage of data streaming for which the 
TMS320C6711 is optimized) and low-priority processes performed soft 
real-time communication with the user. Multiple external channels (link 
drivers) were developed that allowed the processes to communicate with 
the setup. The CSP paradigm guided this project without the 
requirement of extensive knowledge about multithreading and more 
importantly this project was accomplished the first time right. 

The TMS320C6711 ran on 166 MHz which appeared too slow for the job 
and therefore a PC with a 2.4 GHz Intel Pentium PC was used. The 
application that ran on the TMS320C6711 also ran on the PC. Only the 
link drivers for the TMS320C6711 had to be replaced by link drivers for 
the PC I/O cards. 

This application shows several benefits of using CTC++, such as 

• one is freed from programming threads, 

• the application is highly portable between platforms, 

• guidance and development speedup, 

• the application was done the first time right. 

6.4 Laboratory PC and embedded PC 
PC’s with special I/O cards are often used as laboratory equipment 
connected to laboratory set-ups. Such a PC is called a laboratory PC. The 
Control Engineering Laboratory uses laboratory PC’s for controller 
design and controlling the laboratory set-ups. A PC that is embedded in 
a machine is called an embedded PC. 
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The development of CTC++ for the PC platform resulted in the support 
of the following four targets: 

• bare processor without file system support 

• DOS 

• Linux 

• Real-Time Linux (RTAI) 

CTC++ programs made for Laboratory PC’s run almost unchanged on 
embedded PC’s, and visa versa. It may only require a different set of link 
drivers which are declared in the top network builder. The processor-
specific methods of these targets are very similar. Therefore, the API of 
CTC++ allows a concurrent program to migrate to any of the previously 
mentioned targets without changing the process architecture. 

GNU compiler tools (GNU, 1996) have been used for all four targets. 
CTC++ can run in a single thread from the CPU or threads borrowed 
from an operating system, such as Linux or RTAI. CTC++ does not 
require an operating system if no file system or any other operating 
system resource is required. Due to the embedded scheduler, the context 
switch times were equal on DOS and on Linux. The channel 
communication time is 1 μs on a 266 Mhz Pentium PC. 

6.5 ARTY, an autonomous robot 
Student projects in 1998-1999 resulted in an autonomous robot, called 
ARTY. ARTY was developed as a mobile robot that can autonomously 
drive to a destination (Balkema et al., 1999; Beneder, 1998). See a picture 
of ARTY in Figure 6-5. 
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Figure 6-5 Photo of ARTY. 

ARTY takes its own decisions on the basis of its destination and the 
obstacles it encounters. ARTY knows the distances between obstacles by 
using ultrasonic sensors and it knows its location via surrounding 
beacons. See Figure 6-6. 

 

Figure 6-6 Behaviour of ARTY. 
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ARTY must be able to drive 3 to 4 hours on one battery cell. Low power 
consumption was an important design goal. The maximum speed of 
ARTY is about 13 cm/second. 

ARTY contains the following parts: 

• PC/104 board (486 CPU with 4 Mb onboard memory) 

• Two navigation wheels for moving forward, backward, or 
turning 

• Two supporting wheels to keep the frame horizontal 

• Eight Polaroid ultrasonic sensors for measuring distance with 
surrounding objects 

• Two bumpers for detecting obstacles that were missed by the 
ultrasonic sensors 

• One beacon sensor for detecting its position between infrared 
beacons 

• Control hardware programmed on an Altera Programmable 
Logic Device (PLD) 

• 6 Volts battery 

The first software was agent-oriented without a proper understanding of 
concurrency. The software resulted in a sequential execution framework 
of agents in C++ without multithreading. At the time, multithreading 
was considered complicated. The agent-based method by van Breemen 
(2001) provided a framework for structuring the problem domain 
towards an agent-based design of solutions. The divide and conquer 
approach resulted in a structured agent-based software architecture 
whereby each agent is responsible for a sub-task. Concurrency, which 
was natural in hardware and natural in the agent-based concepts, 
vanishes in a sequential software framework. Timing, priorities, interrupt 
handling, and processor utilization are problems that were implemented 
in an ad-hoc manner and became sources of complexities. Especially 
when it comes to concurrent event handling and preemption, these 
hurdles caused discontinuities between the design and the 
implementation. Van Breemen (2001) recommended that the CTC++ 
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library would have given a good foundation to create a truly concurrent 
agent-based framework. As a follow-up, the proposed methodology and 
CTC++ were applied to ARTY and resulted in a concurrent control 
application, which has the task of controlling the two motors (Engelen, 
2004; Modderkolk, 2003) independently from each other. The design and 
implementation of the process architecture using CSP diagrams and 
CTC++ are described in the next sections. The agent-based method has 
been omitted here since it did not yet comprehend concurrency in a 
systematic way. 

6.5.1 Motor controller description 

The task description of the motor controller is shaped by the appearance 
of the physical hardware and the way it should service the artificial 
intelligence of ARTY. The hardware structure of a single motor control 
system is depicted in Figure 6-7. The hardware structure is the same for 
the other motor control system. 

 

Figure 6-7 Single motor loop controller. 

The control application comprises two loop control processes and one 
sequence control process. Each motor is controlled by an independent 
control loop, which has the duty of keeping the motor at a desired speed. 
The desired speed is provided by the sequence control process. The 
sequence control process concerns the artificial intelligence of ARTY and 
it can be replaced by any sophisticated process. The concurrent nature of 
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the loop control processes and the sequence loop process should allow 
them to operate independently and eventually at different frequencies. 

6.5.2 Process architecture 

The process architecture of the motor control part of ARTY is derived 
from the task description (specification) in Section 6.5.1. The process 
architecture is designed using CSP diagrams. Figure 6-8 shows the 
communication diagram of the control application. This diagram is the 
top CSP diagram and is called the context diagram. This was discussed in 
Section 2.2.1. 

 

Figure 6-8 Communication diagram of motor control part. 

The process class MotorControllerLeftProcess describes the left loop 
controller and the process class MotorControllerRightProcess describes 
the right loop controller. Process class SequenceControllerProcess 
specifies the sequence control process which commands the loop 
controllers to perform a specified speed. The channels that concern 
sampling and actuation are specified with sampling intervals Ts1 and Ts2. 
In this application, the intervals for both loop controllers are equal, 
Ts1=Ts2. See suffix “@ Ts1” and “@ Ts2” in Figure 6-8. 
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The process class SequenceControllerProcess describes a sporadic 
process without a periodic interval. It implements an algorithm that 
allows ARTY to drive a simple path. This process can be substituted by a 
more intelligent process (Balkema et al., 1999). This process could very 
well operate on sampling intervals Ts3 > Ts1, Ts2. Such a change in the 
software does not affect the processes in the process architecture. 

Figure 6-9 depicts the compositional relationships between the processes. 
In this application, the motor controllers perform at a higher frequency 
than the sequence controller. Processes that are executing at different 
frequencies can be prioritized using a rate-monotonic priority scheme. 
This rate-monotonic priority scheme is implemented by the unequally-
prioritized parallel operator on the interrelationship between the 
sequence controller and the motor controllers. 

 

Figure 6-9 Composition diagram of motor control part. 

Instead of decoupling the sequence controller and the motor controllers 
with super-sampling buffered data channels, we used an alting construct 
in the motor controller process from the sequence controller process. 

The blueprint of the MotorControllerLeftProcess is given by the 
communication diagram and the composition diagrams in Figure 6-10 
and Figure 6-11 respectively. The blueprint of 
MotorControllerRightProcess is similar and therefore omitted. 
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Figure 6-10 Communication diagram of MotorControllerLeftProcess. 

 

Figure 6-11 Composition diagram of MotorControllerLeftProcess. 
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The communication diagram and the composition diagram are viewed 
by a transparent hierarchical structure, which of course can be viewed in 
a layered hierarchical structure of black boxes. The code is hierarchically 
structured according to the process architecture. 

The process mclSubmodel represents a leaf process that is developed in 20-
sim. Code is generated by 20-sim with C++ templates. This is a process 
without channels and it solely performs the control laws using an array 
of input-variables u[], an array of output-variables y[] and its internal 
state. The arrays of u[] and y[] are a property of 20-sim code generation. 
The names setpoint, feedback, and steer between square brackets refer to 
index numbers in the arrays. Process mcl20Proc is a so-called 20-process 
which always terminates and is dedicated to invoke the methods of the 
submodel object. Process mcl20Proc specifies an array of input-channels 
chanin[] and an array of output-channels chanout[] on which the process 
communicates with its concurrent environment. Process mclProc 
performs process mcl20Proc in an infinite loop. 

In the composition diagram one can see that the process is reactive on 
channels chanin[setpoint] and chanin[feedback]. The points of channel 
communication (see the ?- and !-processes) safely synchronize data 
transfer between parallel processes. While the process is waiting on the 
feedback_leftspeed (or chanin[feedback]) channel, the sequence 
controller can alter the setpoint via the setpoint_leftspeed (or 
chanin[setpoint]) channel. The prioritized alternative construct takes 
care of the proper event handling. The synchronization of the variable 
elements in u[] and y[] is based on the sequence operator and does not 
require a channel. 

In process class MotorControllerLeft20Process the channels are indexed 
and in process class MotorControllerLeftProcess these channels are given 
sensible names. A process-interface of sensible port names is easier to 
use. Process class MotorControllerLeftProcess transforms the indexed 
channels to a process-interface with sensible names. The mapping 
between the sensible names and indexed channels was not automated 
since it would require changes to the 20-sim code-generator. With the 
template %submodel%.info, 20-sim creates a MotorControllerLeft.info text 
file which is named after the sub-model and contains the indexes and 
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corresponding variable names that are derived from the 20-sim sub-
model. This file can be used to automate the mapping of the variables 
and channels on the corresponding indexed array elements. 

6.5.3 Controller design 

The process class MotorControllerLeft in Figure 6-10 and Figure 6-11 is 
modelled, simulated, and code-generated with 20-sim. The block 
diagram of MotorControllerLeft is given in Figure 6-12. The controller 
design of the right motor is identical. This figure is a direct copy-and-
paste from the 20-sim model editor. 

 

setpoint, steer, and feedback are discrete speed signals
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feedback SpeedSensor

f

velicity

m

ArtyMass
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Figure 6-12 Block diagram of MotorControllerLeft. 

The dynamics of the sub-models PathGenerator, MotorControllerLeft, 
PWMGenerator, and SpeedSensor were designed using block diagrams. The 
dynamics of sub-model MotorLeft and the mass was described using a 
bond graph. The CSP diagram for the right motor is similar but with 
slightly different parameters. All these sub-models are relevant to the 
total dynamics of the system and they are relevant to the design of the 
control laws. In fact, this behaviour should include the dynamics of the 
process architecture—the engagement of events. Most of this behaviour 
is part of the simulation framework of 20-sim, i.e. its behaviour 
corresponds to a sequence of inputs, calculation, and outputs. However, 
the choice between the joystick setpoint and the control loop feedback 
had to be artificially solved in 20-sim. This solution is based on a busy 
polling workaround, which complicated the sub-model PathGenerator. 
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An alternative construct (as shown in Figure 6-11) is a more elegant 
solution that makes the application truly reactive without the need for 
busy polling constructs. The MotorControllerLeft sub-model is code-
generated and merged with the code of the software architecture as 
explained in Section 6.5.2. 

The controller processes are implemented by a PID controller. The 8-bit 
resolution of the signals steer and feedback was determined by the 
creators of ARTY and fixed in hardware. The signals in this model are 
real numbers and the PID controller itself operates with real numbers. 
Quantization of these signals is performed by the PWMGenerator and 
SpeedSensor sub-models. 

The PWMGenerator is responsible for translating a discrete steer value 
from the controller to a true PWM signal. This sub-model matches the 
real PWM device on ARTY. The steer signals are 8-bit values with range 
[-127, +127] which corresponds to the speed [-13, +13] cm/s. 

The SpeedSensor sub-model converts and scales the velocity of the wheel 
(the actual speed of ARTY) to a discrete value of ticks per sample. This 
value is also an 8-bit value with range [-127, +127]. 

The sub-model PathGenerator generates a simple stream of steps from 0 
to 120 or from 0 to -120. 

6.5.4 Implementation 

The implementation of the control software is the translation of the CSP 
diagrams to C++ using CTC++ and code from 20-sim. The listings that 
resulted from this translation are described in Appendix D.6. 

Straightforward translation 

All elements in a CSP diagram are declared by the parent process they 
describe. The type of the elements and their identifiers specify the type of 
declarations or the required code constructs. This allows for a 
straightforward translation from CSP diagrams to its C++ code using 



 6. CSP concepts applied to control systems 

 

240

CTC++. The translation was done manually, but this can be automated 
by a software design tool that supports CSP diagrams. 

The controller sub-models in 20-sim are automatically translated to C++, 
using C++ templates, by 20-sim. This results in generated processes for 
each sub-model that perform the control laws. These processes require 
state manipulation to initiate their input and to retrieve their output. 

Network building processes 

A process that is responsible for constructing a network of processes is 
called a network builder. A program can contain a set of network builders. 
The network builder that describes the top CSP diagram or context 
diagram is called a top network builder. The context diagram is usually the 
part of the process architecture that connects the program with the real-
world via hardware links. Therefore, the top network builder is usually 
hardware dependent and declares external channels. The external 
channels are further connected to sub-processes. Except for the top 
network builder, all other network builders are hardware independent. 
This makes a CSP-based program highly portable. 

Figure 6-8 and 6-9 specify the context diagram of the motor part of 
ARTY. In C++, this top network builder is implemented in the main() 
method. The main() is the first method called upon to execute the 
program. Therefore, the main() method is equivalent to the constructor 
and the run() of a process. The implementation of the main() method 
and the run() methods of the sub-processes are described in Appendix 
D.6. 

The top network builder is constructed and executed according to a 
uniform pattern, consisting of the following ingredients: 

1. All top elements are declared, i.e. external channels, internal 
channels, and processes in the context diagram. 

2. The top compositional construct is created, which is usually a 
PAR or PRIPAR. The declared processes are assigned to the 
constructs and connected via the channels. 
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3. The timing on channels is set up. 

4. The run() method of the construct is invoked. 

5. After the run() method terminates, all the declared objects and 
processes are deleted. 

6. Now the main() method can safely terminate. 

Since CTC and CTC++ are written in portable C/C++, the minimal 
requirements depend on the quality of the C/C++ compiler and linker. 
Compiler optimization can make the code fast, but also large. On the PC 
architecture, the CTC and CTC++ libraries indicate the following 
minimal requirements: 

• 50K bytes of program memory, 

• 4K bytes of data memory, 

• simple register model of 16-bit registers, 

• a 16-bit real-time timer. 

These minimal requirements are based on code without debug 
information and optimized for space. These minimal requirements 
exclude the amount of memory that is eventually used by the application 
and link drivers. 

6.5.5 Experiments 

In open loop, ARTY could not perfectly drive straight forward or 
backwards. ARTY tended to go left or sometimes right. The condition of 
the battery was an important factor for this drift. The wheels reached 
their maximum speed in approximately 0.5 seconds on a steer signal 
from 0 to 120 (0-12.2 cm/s). In close-loop, the maximum speed on steps 
from 0 to 120 was reached in 0.25 seconds. ARTY drove nicely in a 
straight line and the condition of the battery no longer caused drift. The 
response of ARTY has become twice as fast. 



 6. CSP concepts applied to control systems 

 

242

A circle-test program showed good results. With the input parameters 
speed, radius and direction, ARTY obeys this command and drives 
circles with the correct speed, correct radius and in the right direction. 
See Figure 6-13. After many circles a small error was noticeable but 
acceptably small due to slip of the wheel with the floor. This slip was not 
taken into account when designing the controller. 

 

Figure 6-13 Circle-test program. 

We took the opportunity to experiment with different frequencies for 
each loop controller, Ts1≠Ts2. For example, the sampling interval of one 
loop controller was set to 10 Hz and the other to 100 Hz. Instead of 
controlling both motors on 100 Hz, processor time can be saved so that 
the real-time requirements of other processes can be met more easily. The 
experiment showed that these different sampling intervals did not 
change the behaviour of ARTY. The implementation of periodical events 
is an easy task with CTC++, which is orthogonal to the program 
structure and scales well on multiple frequency MIMO systems. 

6.6 JIWY, a robotic servo system 
A two-degree-of-freedom robotic servo system was reused for the 
purpose of applying a stepwise refinement trajectory for designing and 
implementing the control software. The servo system is called JIWY, see 
Figure 6-14. The construction contains two revolute joints that allow a 
mounted device, like a camera, to rotate on a horizontal axis and a 
vertical axis. JIWY could be used as a surveillance device, whereby 
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people can remotely view the room in which JIWY resides. Users can 
interact with JIWY via the internet. The images from the webcam can be 
remotely viewed and JIWY can be steered with a remote joystick or a 
remote keyboard. A prototype with a webcam is described in Smith 
(2002). 

 

Figure 6-14 Photo of JIWY servo system. 

The joints are equipped with DC motors and incremental encoders. JIWY 
is controlled by a PC equipped with a National Instruments I/O card 
(PCI-6024E, 2000), an analogue joystick, and supplied with a power-
supply/amplifier/circuit box (I/O box) for driving the motors and 
converting sensor and actuator signals. The PC is connected to the 
internet via a LAN network. Details on JIWY can be found in Jovanovic 
et al (2002). 

An overview of the hardware structure of one control loop is given in 
Figure 6-15. 
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Figure 6-15 Hardware structure of one motor control system. 

6.6.1 Motion control description 

JIWY uses incremental encoders and therefore the centre position for 
each axis has to be determined by alignment. It is required that the outer 
boundaries of each axis are determined first in order to calculate the 
centre position of the axis. Each joint rotates to its end-stop, at which 
point the process terminates. It remembers the maximum value. The next 
process rotates the joint with constant velocity to the other end until it 
reaches the end-stop. Again this process remembers the maximum value. 
Subsequently, the main servo position motion controller takes over. It 
uses the two maximum values from the alignment processes to 
determine the centre position of the joint. The main controller can be 
stopped by the user by pressing a specific button on the joystick. After 
the main controller is stopped by the user, it is required that the joints 
return back to their centre position as a safe state. This process is called 
homing. After homing, the motors will be disabled. 
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6.6.2 Process architecture 

The process architecture of JIWY has been designed using CSP diagrams. 
The components were derived from the description (specification) in 
Section 6.6.1. Some freedom of viewing CSP diagrams, with slightly 
different degrees of detail, is illustrated. 

Modes of operation 

The functional description, as described in Section 6.6.1, gives rise to four 
control modes per joint. Each mode identifies a separate process. These 
processes are depicted in Figure 6-16 and Figure 6-18. 

Figure 6-16 shows the communication diagram representing the data-
flow between these four processes. Each process has an input-channel 
(feedback_horizontal) that provides the angle of the joint and an output-
channel (control_horizontal) that steers the motor. The main controller 
motionControlH receives the joystick set-points and joystick buttons from 
the channels joystick_horizontal and joystick_buttons. 

 

Figure 6-16 Communication diagram of the horizontal loop controller. 
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The names feedback_horizontal, control_horizontal, 
joystick_horizontal, and joystick_buttons identify process-interface 
elements or ports of the parent process. Here, the parent process is the 
main process or the top network builder. These names are used inside 
the parent process and are connected to communication relationships 
outside the process. Suffix “@ Tsh” specifies that we deal with a sampled 
data system, where the samples arrive at equidistant moments in time. 
Clearly, each sample must be processed before the next arrival. This 
suffix means that the external channels are triggered on sampling period 
Tsh for the horizontal control loop. Tsv is the sampling period for the 
vertical control loop. The CSP diagram for the vertical control loop is not 
shown here as it is similar to the horizontal control loop. This 
information is used to set up timing in the process architecture, see 
Section 6.6.4. 

 

Figure 6-17 Communication diagram with port detail. 

Figure 6-17 shows the necessary data-flow or dependencies between the 
inputs, outputs, and the processes. In order to determine the correctness 
of connectivity, ports labels can be shown next to the processes. This is 
illustrated in Figure 6-17. The diagram becomes more difficult to read for 
the user and for outsiders. Detail reduction by hiding port labels 
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improves the readability of the diagram. This illustration shows that the 
complexity or readability of CSP diagrams comes from the user style (or 
lay-out) and the amount of detail that is shown by a CSP diagram. The 
user should be able to toggle the visibility of port labels, i.e. switching 
between Figure 6-17 and Figure 6-16. Therefore, design tool support is 
inevitable. 

The communication types of ports at each end of a communication 
relationship should be of the same type, otherwise they are incompatible 
and cannot be connected. The type indication :double or :int have been 
hidden from the ports in this example since they can be derived from the 
label-type of the arrow. Thus, derivatives can also be hidden in order to 
make CSP diagram readable. 

 

Figure 6-18 Composition diagram of the horizontal loop controller. 

Figure 6-18 shows the compositional diagram which depicts the control-
flow between these processes (modes). Identifiers for sequential 
relationships between processes and primitive processes are not really 
necessary. Here, we add one identifier seq_h which identifies the 
sequential construct. It can be found in the resulting code. Each joint 
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operates in parallel, hence there is a parallel interrelationship between 
the horizontal and vertical processes. The little circle at the end of the 
parallel relationship denotes a parenthesis, which determines a group of 
control processes for the horizontal joint. The parenthesis symbol forms 
one anonymous parent process containing child processes. This is similar 
for the vertical joint, which is not shown in Figure 6-18. The parameters 
for the horizontal joint are slightly different than the vertical joint. We 
will mainly restrict ourselves to the horizontal joint. 

This composition diagram is like an abstract state-transition diagram, 
where the processes represent states of operation (modes) and their 
termination represent the transition between these states (modes). 

Motion controller process 

The motionControlH process in Figure 6-16 is the main controller that 
receives the set-points from the joystick. This process terminates when 
the stop button on the joystick is pressed. This process contains a 20-
process servoHorizontal which computes the control law for each 
sample. See Figure 6-19 and Figure 6-20. The looping is specified by the 
loop process. 

 

Figure 6-19 Communication diagram of motionControlH. 

In Figure 6-19, communication relationships between the external ports 
and the 20-process servoHorizontal are specified. The 20-process ports 
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are rendered by indexed channel array names. This indexing rises from 
the sub-model; chanin[i] → u[i] and y[j] → chanout[j]. 

Two local communication relationships, status and zero, have been 
added. status holds the status of the joystick buttons when it is pressed. 
The μ-process will continue repeating the alternative relationship  until 
status is 2. zero is a constant value 0 in the communication diagram. 
Therefore these variables are declared and initialized with the default 
value in the code. 

 

Figure 6-20 Composition diagram of motionControlH. 

The alternative construct will wait until the channels feedback or 
joystick_buttons become ready. See Figure 6-20. The construct will select 
the controller when feedback is ready to communicate and when the 
joystick button is not pressed. If the joystick was pressed and feedback is 
not yet ready to communicate, then the joystick buttons will be read. If 
both the joystick button was pressed and the feedback is ready then 
reading the buttons will preceed the feedback. In case the stop button 
was pressed (status != 2), the loop controller terminates and a number 
zero will be sent to the actuator in order to release the steering of the 
joint. Successively, the entire process terminates and the joint resides in a 
safe state. Identifiers for sequential relationships between processes and 
primitive processes are not necessary. 

Alignment controller process 

Each alignment mode is based on a velocity controller. Process alignLH 
has been depicted in Figure 6-21 and Figure 6-22. This process contains a 
20-process vleftHorizontal and a loop construct which repeats itself until 
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stop is true. The variable stop becomes true when the end-stop has been 
reached. This is specified by the 20-sim sub-model. Process alignRH is 
identical to alignLH except that the motor rotates right. 

 

Figure 6-21 Communication diagram of alignLH. 

 

Figure 6-22 Composition diagram of alignLH. 

Homing controller process 

The homing controller uses the same position controller process as in the 
motion controller. This process requires a set-point that is set to the 
centre position, i.e. zero. See Figure 6-23 and Figure 6-24. For a change 
we hide the port names in Figure 6-23. The homing process stops when 
the joint resides in a sufficiently small neighbourhood of the centre 
position. This is measured within 10 sample periods. 

vleftHorizontal 
:VelocityControlLeftHorizontal 

20Process 
 

[!stop] 

vleftHorizontal 
:VelocityControlLeftHorizontal 

20Process 
 

stop:double 

max 

[!stop] 

control 

feedback 

chanout[2] 

chanout[1] 

chanin[0] 

chanout[0] 



6.6 JIWY, a robotic servo system 

 

251 

 

Figure 6-23 Communication diagram of homingH. 

 

Figure 6-24 Composition diagram of homingH. 

6.6.3 Controller design 

Separate from CSP diagrams, simulate-able models in 20-sim have to be 
designed in order to determine the control laws. The 20-sim model 
comprises all relevant dynamics of the system and the controller itself. 
Simulations of the model can be found in (Lammertink, 2003). 
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The position motion controller is the main operational mode of this servo 
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set-point generator. Figure 6-25 presents the top-level block diagram of 
this control mode for the horizontal joint. The diagram for the vertical 
joint is similar. The joystick input for the x-axis is simulated by some 
function as described in sub-model JoystickHorizontal. The ioHorizontal 
sub-model models and simulates the hardware input/output interfacing 
between the physical system and the control software. These sub-models 
allow for a more realistic dynamic behaviour, which one can expect from 
the real setup. The physical system is modelled by the sub-model 
MotorHorizontal using bond graphs. 

 

Joystick Controllers IO JIWY

Endstops_horizontal

PositionControllerHorizontalJoystickHorizontal IOHorizontal MotorHorizontal

20-sim 3.4 Viewer (c) CLP 2004  

Figure 6-25 Top-level model of position motion controller in 20-sim. 

The sub-model PositionControllerHorizontal is the software controller 
that will be code generated by 20-sim as 20-processes using C++ 
templates. The controller PositionControllerHorizontal is described 
using block diagrams in 20-sim. This is similar for 
PositionControllerVertical, which may differ in parameters. 

Alignment controller 

The alignment determines the maximum angles of the joints. The 
alignment is velocity controlled, whereby the end-stops must be detected 
while the joint moves slowly and with constant speed. The top-level 
block diagram of the alignment mode for the horizontal joint is given in 
Figure 6-26. 
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Controller IO JIWY

VelocityControlLeftHorizontal IOHorizontal MotorHorizontal

20-sim 3.4 Viewer (c) CLP 2004  

Figure 6-26 Alignment mode for left rotation. 

The sub-model VelocityContolLeftHorizontal is the controller that will be 
code generated by 20-sim as 20-processes. 

Homing controller 

The homing controller HomingControllerHorizontal is almost identical to 
PositionControllerHorizontal. See also Figure 6-25. The only difference is 
that the joystick input is overwritten by value 0 and enforces the joint to 
move to the centre position. This is similar for homing controller 
HomingControllerVertical. 

6.6.4 Implementation 

The implementation of the top network builder and the sub-processes are 
described in Appendix D.7. The translation of CSP diagrams to C++ is 
similar as with ARTY in Appendix D.6. 

Both top network builders from ARTY and JIWY show a common 
pattern of construction (template). Both templates are divided in the 
following parts, as shown in Listing 6-1. 

void main() { 

 //--- external channels declarations 

 ... 

 

 //--- internal channels declarations 

 ... 

 

 //--- processes declarations 

 ... 



 6. CSP concepts applied to control systems 

 

254

 

 //--- compositional construct declaration 

 ... 

 

 //--- set timed events 

 ... 

 

 //--- run the process 

 ... 

 

 //--- delete all instances 

 ... 

} 

Listing 6-1 Template of a network builder. 

This assignment showed that the quality of the program was related to 
the process architecture and the quality of the link drivers. Test-runs 
simulated that the process architecture was correct. Link drivers for the 
National Instruments I/O card (PCI-6024E, 2000) were developed for 
Linux, RTAI, and DOS (Stephan, 2002). Once these link drivers were 
correct on all platforms, the program was portable between these 
platforms without changing the top network builder. 

It was observed that students involved in these projects had modest 
knowledge and experience in programming. They appreciated the CSP 
concepts from which they understand the ins and outs of embedded 
system programming at an appropriate level of abstraction. The 
methodology eliminated programming pitfalls which increased the 
development speed. Above all, they appreciate that they can build 
embedded and real-time software by following the guidelines of the CSP 
concepts. 

6.6.5 Tests 

Once the CSP diagrams and the 20-sim model were completed, the 
generated controller software worked the first time right. 

The sensitivity of detecting the end-stops had to be fine-tuned in the 
controller design in order to reduce the force on hitting the end-stops. 
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JIWY has been successfully used for demonstrations. It was observed that 
the dynamics of JIWY was close to the dynamics of the 20-sim models. To 
protect the motors, the current to the motors was limited to 1.5A. 

The control software has been tested in DOS and in RTAI. RTAI and 
Linux offered the ability to use the webcam and internet services. Both 
platforms worked equally well. 

6.7 Conclusions 
The proposed methodology demonstrates a sound foundation for 
systematic designing and implementing control software on embedded 
control systems. It has been demonstrated that this methodology applies 
to laboratory setups and to DSP-based embedded computer systems. The 
graphical modelling language has been used to design the process 
architecture of the control software. The resulting CSP diagrams were 
essential in describing and understanding the desired behaviour of the 
software and hardware. Unfortunately no design tool was present yet to 
design CSP diagrams or to translate CSP diagrams to a code framework. 
The translation of CSP diagrams to code was manually done in a 
straightforward and systematic way which eliminated surprises and 
simplified the implementation. The code is documented with CSP 
diagrams. 

The aspects of simplicity, portability, and generality that were mentioned 
in Section 4.2.4 have been demonstrated. 

The simplicity, as a result of applying the occam’s razor, resulted in a 
compact and coherent set of graphical notations, methods, and 
constructs. Redundancy has been minimized in this set without reducing 
flexibility. The proposed methodology comprises the necessary 
fundamental concepts for developing concurrent software. Simplicity 
comes from abstraction, semantical consistencies between design and 
code, and rapid prototyping through plug and play. This significantly 
decreased the development time of the software, because the user priory 
knows exactly where to put code in which processes or objects. 



 6. CSP concepts applied to control systems 

 

256

The portability of the applications comes from the channel concept and 
the small set of processor-specific methods. The channel concept makes 
the applications highly hardware independent. Each different platform 
requires a different set of link drivers. The processor-specific methods 
have been successfully ported to the following processors that were used 
by the laboratory of Control Engineering and the laboratory of Signals 
and Systems: 

• Texas Instrument TMS320F240 DSP (TMS320F2000 series)  
(Texas Instruments, 1996) 

• Texas Instrument TMS320C6711 DSP (TMS320C6000 series)  
(Texas Instruments, 1999) 

• Analog Devices ADSP-21992 DSP (ADSP 2199x series)  
(Analog Devices, 2003) 

• Intel i386 series microprocessors  
(Intel, 1996) 

Generality is demonstrated by translating the CT object model to 
different programming languages, different operating systems, and to 
different CPUs. The methodology abstracts away from from low level 
technical issues; the low level technical issues are well-ordered by using 
CSP diagrams. The approach of designing and implementing the process 
architectures of ARTY and JIWY are very similar. Design patterns easily 
map on the underlying hardware. Also, 20-sim integrated nicely in this 
methodology. There were no engineering surprises that complicated the 
designs or implementions. An important observation was that the 
outcomes of these projects were predictable early in the design phase. 
CSP diagrams and CT offered the right paradigm to deal properly with 
sophisticated concurrent applications on embedded computer systems. 
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Discussion 
7 Discussion 

7.1 Conclusions 
A methodology for building embedded real-time software for 
heterogeneous embedded control systems is developed. The proposed 
methodology comprehends a foundation based on CSP concepts, which 
deals with the technical “how to’s” for building concurrent software. The 
foundation deals with common sources of complexities in programming 
concurrent software, such as multithreading, interrupt handling, 
exception handling, inter-processor communication, priority scheduling, 
reactivity, responsiveness, safe-guarding and fault-tolerance, etc. These 
technical issues are elevated to a high level of abstraction. The abstraction 
simplifies the design of embedded real-time applications and their 
implementation in software and it simplifies the mindset of the user. The 
proposed methodology allows the user to focus on the control 
application at hand rather than spending time on difficult and low level 
technical issues early in the development phase. 

The proposed methodology comprises two ingredients: 

1. A graphical modelling language is developed for creating concurrent 
designs, called process architectures. The language captures the 
CSP concepts by a graphical notation which one can use to 
specify, design, and to program process architectures for 
embedded real-time systems. The resulting designs are called 
CSP diagrams. 
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2. A CSP object model (CT) is developed that implements the CSP 
concepts using object-oriented techniques and can be 
implemented in object-oriented programming languages. The 
results are CSP libraries for Java, C and C++. Hence, this proposed 
methodology shows that the CSP concepts offer a process-
oriented paradigm which marries well with object-orientation. 

The graphical modelling language and the CT object model provide a 
foundation to specifying, designing, and implementing process 
architectures of control applications. This foundation is an important 
provision for building tool support. The CSP concepts bring about well-
defined, distinct, and coherent concerns. This leads to abstraction, 
complexity reduction, and complexity absorption. The continuity and 
consistency of concurrency between the different phases in the 
development trajectory are guaranteed by model checking. The results of 
this methodology embrace what-you-see-is-what-you-get. Consequently, 
this methodology allows for rapid prototyping and round-trip 
engineering. 

Process architectures capture hierarchies of processes, communication 
between processes, the role of processes, their specific execution order, 
and timing. The graphical modelling language divides the relationships 
between processes into communication relationships and composition 
relationships. This relationship-oriented design approach allows for 
scalable designs and different views. A CSP diagram consists of two 
distinct views, respectively the communication diagram and the 
composition diagram. Each diagram describes a different concurrency 
concern in the software design trajectory. The collaboration between both 
types of relationships provide valuable information about their 
compositions that is useful to determine design conflicts, such as 
deadlocks, livelocks, and priority inversion problems in a process 
architecture. This information can determine the exact type of 
communication (e.g. rendezvous, buffered, sub-sampling, and super-
sampling) between processes necessary to solve design conflicts or to 
optimize the performance of the process architecture in a systematic way. 
Composition diagrams can also be traced for various design decisions, 
which may be in conflict with the specification or mind set of the user. 
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Thus, CSP diagrams incorporate guidance for the user to avoid design 
and coding errors. 

The graphical modelling language does not prescribe styles for designing 
CSP diagrams. The user can design complex diagrams that are 
unreadable to others. Thus, the user is responsible for the readability of 
the diagrams. 

The design process is guided by design rules, such as 

• Compositional analysis rules—useful for analyzing compositional 
CSP constructs. Compositional analysis rules are used for 

o  determining the operators on hidden interrelationships, 

o for writing ambiguous or unambiguous algebraic 
expressions, 

o and for detecting specification conflicts. 

• Reallocation rules—rules for reallocating relationships with 
another possibly nearest process, while preserving the algebraic 
expression. This allows for a free topology of processes. 

• Balancing cycles—technique that ensures a balanced cycle of 
correct parenthesizing indexes. A design must be consistent 
when viewed from different angles, i.e. reading a CSP diagram 
starting from different processes and possibly in different 
directions. 

These rules offer analysis approaches that guarantee consistency and 
correctness, such as 

• Specification analysis—finding specification conflicts whereby 
relationships are in contradiction in the design. 

• Deadlock analysis—finding deadlock by searching for sequential 
conflicts between primitive communication processes. 

• Priority inversion analysis—finding priority inversion problems 
by searching for priority conflicts between processes. 

This research showed that the CSP concepts reach further than the good-
old transputer technology. The CSP concepts provide theoretical and 
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pragmatic solutions to complex problems in embedded software 
engineering. This methodology comprises several enhancements which 
are essential in embedded real-time software. The enhancements are: 

• Shared channels—data channels or call channels can be shared by 
multiple producers/ consumers and clients /servers. 

• Internal and external data channels—internal data channels 
transfer data (i.e. primitive data types or objects) via shared 
memory and external data channels transfer data via hardware 
devices. A process cannot distinguish between an internal or 
external data channel. 

• Buffered data channels—primitive data types or objects can be 
passed and temporarily stored in the channel via some FIFO, 
sub-sampling, or super-sampling queue. 

• Call channels—high level channels for requesting methods on a 
server process. 

• Barrier—performing a complex communication process as a 
layered process consisting of communicating processes via 
channels. 

• Notion of priorities—support for preference priorities, 
propagation of priorities, and fair scheduling. 

• Improved parallel construct—supports nested and compositional 
priorities and scheduling set up by the PAR and PRIPAR 
compositions. 

• Improved alternative constructs—the decisions made by the ALT 
and PRIALT can be influenced by the priorities of alting 
processes (priority propagation imposed by the surrounding 
PAR/PRIPAR composition). 

• Exception handling—escaping from exceptions and gathering 
exceptions to be handled. 

• Timing—postponing events in untimed CSP models. 

It has been demonstrated that this methodology works in practice. The 
use of CSP diagrams were essential in describing and understanding the 
desired behaviour of the software for the control systems ARTY and 
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JIWY in Chapter 6. A design tool was in development and unfortunately 
the tool was not mature enough for designing CSP diagrams or to 
translate CSP diagrams to a code framework. The translation of CSP 
diagrams to code was manually done in a straightforward and 
systematic way which eliminated surprises and simplified the 
implementation. A prototype design tool is under construction by 
Jovanivic (2001) 

The aspects of simplicity, portability, and generality have been 
demonstrated. The simplicity comes from abstraction, semantically 
consistencies between CSP concepts and rapid prototyping through plug 
and play. The simplification decreased the development time of the 
software without being an expert in programming embedded systems. 
The portability of the applications comes from the channel model, which 
makes the applications highly hardware independent. Each different 
platform requires a different set of link drivers. Generality is 
demonstrated by translating the CT object model to different 
programming languages, to different operating systems, and to different 
CPUs. 

7.2 Suggestions for future research 
A software design tool is inevitable in order to truly benefit from CSP 
diagrams. The prototyped design tool that is currently in development 
can do a fraction of the possibilities that CSP diagrams can offer. The 
software design tool can generate concurrent frameworks for various 
software engineering tools. The integration or coupling of such a 
software design tool with other tools requires further investigation. 

The graphical modelling language does not prescribe how process 
architectures must be designed. It is very well possible that the user 
models unreadable CSP diagrams. It shoulds be investigated in what 
way the software design tool can impose a systematic design process, 
which results in readable designs. 
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The model-checker FDR cannot check the real-time performance of 
process architectures, except for deadloack and livelock. For example, 
FDR does not support priorities and timing. Performance analysis should 
determine whether or not the process architecture suffers from starvation 
or other performance problems. Performance analysis takes priorities 
and the timing parameters into account. Performance analysis was not 
part of this research. A performance analysis tool should be investigated. 

CSP diagrams marry well with block diagrams. Therefore, CSP diagrams 
should be used for designing hybrid systems. This requires research in 
the field of control theory for which CSP can describe the interaction 
between discrete and continuous-time systems. This is more promising 
than using traditional state diagrams, which tend to be only applicable 
for small control problems. 

The exception construct in CSP diagrams and in CT showed to be useful 
for the applied control applications. However, the semantics of the 
exception construct should be reconsidered. It should be investigated if 
the semantics of the exception operator can get closer to the semantics of 
the interrupt operator. The implementation of such exception construct 
may not be as complicated as was suggested in this thesis. 

The CT library has been tested by test programs. These tests showed 
appoved behaviour. However, this does not prove that everything is 
correct and perhaps something slipped one's mind. In order to gain trust 
in the implementation and semantics of the CSP libraries, it is required 
that the CSP libraries are model-checked using CSP. A professional tool 
is available, called the Failure-Divergence-Refinement tool (FDR, 2004). 
Model checking should prove that the semantics of the CT elements are 
conform to the theory. 

The use of CSP diagrams could improve the concurrency model in the 
UML. Modelling concurrency in the UML is complex due to 
discontinuities between the different views. CSP diagrams could add a 
new view to the UML that integrates with the other views in the UML. 
This approach can guarantees safe and reliable multithreading without 
dealing with threads directly. This addition of CSP diagrams to the UML 
may result in real-time UML for embedded systems. 
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The CSP Language 
A The CSP Language 

A.1 Introduction 
CSP stands for Communicating Sequential Processes, which was introduced 
by C.A.R. Hoare in 1978 (Hoare, 1978). The first textbook was published 
in 1985 (Hoare, 1985). Since then CSP, as a language, has significantly 
evolved. Roscoe (1998) updated CSP and published it in 1998. This 
version is referred to as CSP II. This version has been used in this thesis. 
CSP remains untimed because it abstracts away from notion of time. A 
timed CSP variant exists, which was developed by Schneider (2000). This 
extension to untimed CSP is not used in this thesis. 

This appendix outlines the syntax and semantics of untimed CSP as it is 
now used. An illuminating and brief tutorial was written by Martin and 
Jassim (1997). This text has been used in this appendix to give an 
overview of CSP. A complete outline of the syntax and semantics of CSP 
can be found in (Roscoe, 1998; Schneider, 2000). 

A.2 Evolving Theory 
CSP encompasses the fundamental aspects of concurrency. From this 
point the theory is evolving with extreme caution for correctness. 
Extensions to untimed CSP exists which enhance the use of CSP for 
particular areas in software design. For example, a timed CSP variant 
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was developed, which allows for reasoning about timing behaviour (e.g. 
performance, timeouts, delays) in processes. Another variant is 
prioritized CSP which was developed by Lawrence (1998) which includes 
notion of priorities as was found in the occam programming language; 
i.e. the PRIALT and PRIPAR processes. 

The textbooks by Nissanke (1997) and Schneider (2000) illustrate how 
CSP can be applied to real-time systems. In Maggee & Kramer (1999) CSP 
provides a systematic and practical approach to designing, analyzing and 
implementing concurrent programs in Java. 

A.3 The CSP Language 

Basic Syntax and Informal Description 

The basic syntax of CSP is described by the following grammar. 

:

;
|

( )
name

Process STOP

SKIP
event Process

Process Process
Process alph alph Process

Process Process
Process Process
Process Process

Process event
f Process

==

→

 
|[ ]⏐
|||

 

 

Here event ranges over a universal set of events, ∑, alph ranges over 
subsets of ∑, f ranges over a set of function names, and name ranges over 
a set of process names. 
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A process describes the behaviour of a component in terms of the events 
in which it may engage. The simplest process of all is STOP. This is the 
process which represents a deadlocked component. It never engages in 
any event. Another primitive process is SKIP which does nothing but 
terminate successfully; it only performs the special event √, which 
represents successful termination. 

An event may be combined with a process using the prefix operator, 
written →. The process bang→UNIVERSE describes a process which first 
engages in event bang then behaves according to process UNIVERSE. 
This new process can be given a name CREATION as in 

CREATION bang UNIVERSE= →  

Processes may be defined in terms of themselves using the principle of 
recursion. Consider a process to describe the ticking of an everlasting 
clock. 

CLOCK tick CLOCK= →  

CLOCK is a process which performs event tick and then starts again. This 
is a somewhat abstract definition. No information is given as to the 
duration or frequency of ticks. We are simply told that the clock will 
keep on ticking. A duration of the tick can be specified with timed CSP 
(Davies and Schneider, 1995). The recursion notation is commonly 
extended to a set of simultaneous equations where a number of processes 
are defined in terms of each other. This is known as mutual recursion. 

There are a number of CSP operations which combine two processes to 
produce a new one. The first of these that we shall consider is sequential 
composition. 

;UNIVERSE EXPAND CONTRACT=  

Is the process which first behaves like EXPAND, but when EXPAND is 
ready to terminate it continues by behaving like CONTRACT. However it 
may be possible that EXPAND will never terminate. 
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It is rather more complicated to compose two processes in parallel than 
in sequence. It is necessary to specify a set of events for each process, 
known as its alphabet. The process denoted 

}| }

PANTOMIMEHORSE

FRONT forward,backward,nod forward,backward,wag BACK

=

|[{ { ]⏐
 

represents the parallel composition of two processes: FRONT with 
alphabet }forward,backward,nod{  and BACK with alphabet 

}forward,backward,wag{ . Here each behaves according to its own 
definition, but with the constraint that events which are in the alphabet 
of both FRONT and BACK, i.e. forward and backward, require their 
simultaneous participation. However they may progress independently 
on those events belonging solely to their own alphabet, If a situation 
were to arise where FRONT could only perform event forward and BACK 
could perform event backward then deadlock would have occurred. Note 
that a pantomime is a traditional British theatrical entertainment which 
often features a “horse” consisting of two actors in a single costume, one 
of whom plays the front legs and head while the other plays the hind 
legs and tail. 

Parallel composition may be extended to three or more processes: given a 
sequence of processes 1,.., nV P P=  with corresponding alphabets 

1 ,.., nA A  we write their parallel composition as 

( ) ( )
1

,
n

i ii
PAR V P A

=
=  

Note that it is implicitly assumed that the termination event √ requires 
the joint participation of each process Pi, whether or not it is included in 
their process alphabets. 

An alternative form of parallel composition is interleaving, where there is 
no communication between the component processes. In the parallel 
combination 

  BRAIN MOUTH⏐⏐⏐  
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The two processes, BRAIN and MOUTH, progress independently of each 
other and no cooperation is required on any event, except of √, the 
termination event. Any other actions which are possible for both 
processes will only by one process at the time. Interleaving is a 
commutative and associative operation and so we may extend the 
notation to various indexed forms, such as 

1 :
,    

n

i xi x X
P P

=
⏐⏐⏐ ⏐⏐⏐  

A useful feature of CSP is the ability to describe nondeterministic 
behaviour, which is where a process may operate in an unpredictable 
manner. The process 

 BUFFER TWOPLACE THREEPLACE=   

may behave either like process TWOPLACE or like process 
THREEPLACE, but there is no way of telling which in advance. The 
purpose of the  operator is to specify concurrent systems in an abstract 
manner. At the design stage, there is no reason to provide any more 
detail than is necessary and, where possible, implementation decisions 
should be deferred until later. 

This operation is known as internal choice. CSP also contains an external 
choice operator  which enables the future behaviour of a process to be 
controlled by other processes running along side it in parallel, which, 
collectively, we call its environment. 

The process 

 MICROWAVE DEFROST COOK=   

may behave like DEFROST or like COOK. Its behaviour may be 
controlled by its environment providing that this control is exercised on 
the very first event. If an initial event button1 is offered by DEFROST that 
is not an initial event of COOK, then the environment may coerce 
MICROWAVE into behaving like DEFROST, by performing button1 as its 
initial event. If, however, the environment were to offer an initial event 
that is allowed by both DEFROST and COOK then the choice between 
them would be nondeterministic. 
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Both the choice operators may be extended to indexed forms. We write 

 x:A xx P→  

To represent the behaviour of a process which offers any event of a set A 
to its environment. Once some initial event x has been performed the 
future behaviour of the process is described by the process Px. However, 
the process 

 x:A xx P→  

offers exactly one event x from A to its environment, the choice being 
nondeterministic. 

Sometimes it is useful to be able to restrict the definition of a process to a 
subset of relevant events that it performs. This is done using the hiding 
operator(\). The process 

\CREATION bang  

behaves like CREATION, except that each occurrence of event bang is 
concealed. Note that it is not permitted to hide event √. 

Concealment may introduce non-determinism into deterministic 
processes. It may also introduce the phenomenon of divergence. This is a 
drastic situation where a process performs an endless series of hidden 
actions. Consider, for instance, the process 

\CLOCK tick  

which is clearly a divergent process. It is conventional to extend the 
notation of P\A, where A is a finite set of events. 

Finally let us briefly consider process relabelling. Let f be an alphabet 
transformation function :f ∑ → ∑ , which satisfies the property that only 
finitely many events may be mapped onto a single event. Then the 
process ( )f P  can perform the event ( )f e  whenever P can perform event 
e. As an example consider a function new which maps tick to tock. Then 
we have 
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( ) ( )new CLOCK tock new CLOCK= →  

Denotational Semantic 

The meaning of a CSP process is defined in terms of the circumstances 
under which it might deadlock or diverge. This is the Failures-Divergences 
model. 

A trace of a process P is any finite sequence of events that it may initially 
perform. A divergence of a process is a trace after which it might diverge. 
A failure of a process P consists of a pair (s,X) where s is a trace of P and X 
is the set of events if offered to P by its environment after it has 
performed trace s, might be completely refused. 

Each CSP process is then uniquely defined by a pair of sets (F,D), 
corresponding to its failures and divergences. The failures and divergences 
of the fundamental CSP terms are defined by equations such as 

( ) { }

( ) { }

( ) ( ){ }
( ) ( ) { }{ }

( ) ( ) ( ){ }
,

 , ,

divergences STOP

failures STOP

divergences x P x s s divergences P

failures x P X X x

x s X s X failures P

=

= 〈〉 × ∑

→ = ∈

→ = 〈〉 ⊆ ∑−

∪ ∈

P

 

A complete set of equations can be found in (Roscoe, 1998). These 
particular equations define the meaning of STOP and the event-prefix 
operator →. First we are told that STOP does not diverge, but refuses to 
perform any event whatever set of events is offered to it. Then we are 
told that the divergent traces of x→P are the divergent traces of P which 
event x prefixed to them, and the failures of x→P to be failures of P with 
x prefixed to the trace of each failure, together with parings of the empty 
trace with all subsets of ∑ which exclude x. 
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This model is also used for formal reasoning about the behaviour of 
concurrent systems defined by CSP equations. There is a natural partial 
ordering on the set of all processes given by 

( ) ( )1 1 2 2 1 2 1 2, ,F D F D F F D D⇔ ⊇ ∧ ⊇  

The interpretation of this is that process P1 is worse than P2 if it can 
deadlock or diverge whenever P2 can. This partial ordering is very 
important to the stepwise refinement of concurrent systems. Starting 
from an abstract nondeterministic definition, details of components may 
be independently flashed out whilst preserving important properties of 
the overall system such as freedom from deadlock and divergence. The 
FDR tool of Formal Systems Europe (FDR, 2004) can automatically verify 
this refinement relation in the failures-divergences model. 

A process P is deadlock-free if there is no trace after which it might 
refuse to perform any event, i.e. ∃ ( ) ( ),s s failures P• ∑ ∈ . It is divergence-
free if it has an empty set of divergences. A particularly important point 
to stress is that when a network of CSP processes is composed in parallel 
it becomes a single CSP process. So these definitions apply equally to 
parallel networks of processes as they do to single sequential processes, 
for which deadlock and divergence are not usually a problem. 

Algebraic Semantics 

From the failures-divergences model, a complete set of algebraic laws can 
be deduced, which govern CSP processes, for instance 

( ) ( )

( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

; ; ; ;

; ;

P Q R P Q R

a P Q a P Q

P A B Q Q B A P

P A B C Q B C R P A B Q B C R

P Q R P Q P R

P Q R P Q P R

P STOP P

=

→ = →

=

∪ = ∪

=

=

=

    

        

          

          

  

|[ | ]⏐ |[ | ]⏐

|[ | ]⏐ |[ | ]⏐ |[ | ]⏐ |[Α | ]⏐  
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There are many more such rules, but there is insufficiently room for their 
inclusion here. The rules are used to derive correctness properties of CSP 
systems using algebraic manipulation. See (Roscoe, 1998) for more 
details. 

Operational Semantics 

So far two ways of looking at communicating processes have 
encountered: firstly as algebraic expressions and secondly in terms of 
abstract mathematical sets based on their observable behaviour. There is 
no obvious way of seeing from either of these representations how CSP 
might be realized on a machine. A more concrete approach is given by 
operational semantics. The operational semantics of CSP is a mapping 
from CSP expressions to transition systems. For example, Figure A-1 
illustrates the transition system for the process 

( )a b STOP c STOP→ → →  . 

 

Figure A-1 CSP Transition System. 

The behaviour of a process predicted by its failures and divergences will 
be the same as that which can be observed of its operational 
representation. So we may use the operational semantics of CSP in order 
to prove properties of process behaviour which are phrased in the 

( )a b STOP c STOP→ → →   

b STOP c STOP→ →   

a 

STOP 

b c 
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Failures-Divergences model. This feature turns out to be particularly 
useful when the operational representation of a process is finite although 
its failures and divergences are infinite, as is usually the case in practice. 
Therefore this is the representation of processes which us used inside the 
various CSP verification programs, such as FDR (2004) and Deadlock 
Checker (Martin and Jassim, 1997). 

Language Extensions 

The core CSP syntax described above is really abstract, and lacks certain 
useful features found in conventional sequential and parallel 
programming languages. The extensions outlined below are useful for 
writing more detailed specifications and may be defined in terms of the 
core constructors. 

Sometimes a process is defined with parameters, such as  

( ) ( ), ,BUFF in out in out BUFF in out= → →  

This is a process-schema, rather than an actual process. It defines a CSP 
process for each combination of parameter values. CSP parameters may 
be integers, real numbers, channels (representing events), sets, matrices, 
etc. 

A communication is a special type of event described by a pair c.v, where c 
is the name of the channel on which the event takes place, and v is the 
value of the message that is passed. 

The set of messages communicable on channel c is defined 

( ) { }.type c v c v= ∈∑  

Input and output are defined as follows. A process which first outputs v 
on channel c, then behaves like P is defined simply as 

( ) ( )! .c v P c v P→ = →  
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Outputs may involve expressions of parameters such as ( ) 2!P x c x Q= → . 
The expressions are evaluated according to the appropriate laws. 

A process which is initially prepared to input any value x communicable 
on the channel c, then behave like ( )P x  is defined. 

( )( ) ( ) ( )( )? .v:type cc x P x c v P v→ = →  

It is usual for a communication channel to be used by at most two 
processes at any time: one for input and the other for output. This 
restriction, which is known as triple-disjointedness, is not enforced in the 
modern version of CSP. 

Another important aspect to real programming languages is the use of 
conditionals. Let b be a Boolean expression (either true or false). Then 

( )"  if  else "P b Q P b Q  

is a process which behaves like P if the value of expression b is true, or 
like Q otherwise. 

These extensions are especially useful for specifying fine detail during 
the later stages of program refinement. At the design stage one should 
tend to stick to more abstract, nondeterministic definitions of processes. 
The deadlock issue will usually be addressed at this point. In this way 
one can build robust programs for which deadlock-freedom cannot be 
compromised by implementation decisions made at a later stage. 
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B Processor-specific methods 

CTC and CTC++ are written in 99% portable C/C++ and less than 1% is 
processor-specific. The processor-specific methods must be programmed 
for each different type of processor. The processor-specific methods have 
been reduced to a minimal set of methods, which are categorized as 
follows: 

Context-switching specific methods 

void Processor__startswitch(void); 

Start the first process and hold the thread of control of the main 
program. 

void Processor__stopswitch(void); 

Return the thread of control back to the main program. 

void Processor__contextswitch(void); 

Perform a context switch to the next process thread that is waiting 
on the ready queue of the dispatcher. 

void Processor__enterAtomic(void); 

Enter an atomic region in which no interrupt or context switch may 
occur. 
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void Processor__exitAtomic(void); 

Leave the atomic region and allow interrupts and context switching. 

void Processor__initiateStack(ProcessThread pt, unsigned int size ,  

  void *run); 

Allocate and initiate a stack for the process thread pt with specified 
size and run pointing to the run method of a process.  

int Processor__defaultStackSize(void); 

Return a default stack size. Every process that is added to a parallel 
or priparallel construct with method add(Process) will get a stack 
with the default stack size. This stack size can be overridden with 
method add(Process, stacksize) with stacksize is the new stack 
size in CTC and CTC++. 

Memory specific methods 

Object Processor__malloc(unsigned int size); 

Allocate memory of size and return the pointer to the allocated 
memory. This method returns NULL if no memory can be allocated. 

Void  Processor__free(void *ptr); 

Free allocated memory pointed as specified by ptr. 

Void  Processor__copy(Object src, Object dest, unsigned int size); 

Copy the content of an object src to object dest. The size of the 
memory block that will be copied is specified by size. 
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Interrupt specific methods 

int  Processor__registerInterruptService(unsigned int irq, 

   InterruptService is); 

Register an interrupt service is to an interrupt with number irq. 

int  Processor__unregisterInterruptService(InterruptService is); 

Unregister interrupt service is. 

void  Processor__irqEnable(void); 

Allow interrupts. 

void  Processor__irqDisable(void); 

Disallow interrupts. 

Timer specific methods 

void  Processor__initiateTimer(void); 

Initiate the hardware timer. 

int  Processor__readTimer(void); 

Read the time latch. 

void  Processor__latchTimer(int value); 

Set a new value in the latch of the timer. 

void  Processor__setTimer(int value); 

Override the counter with a new value. 

These methods are prototyped and documented in the source file 
processor.c. These methods are private to the kernel and not publicly 
available for the user. The classes ProcessThread and InterruptService 
take care of some organization and are written in portable C. The timer 
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object is a sophisticated object that makes a 64-bits timer from a 16-bits 
system real-time timer. 16-bit timers are commonly part of computer 
systems. Usually, the system timer is coupled to the processor which 
handles the timer interrupts. Therefore, the timer specific methods are 
related to the Processor class. 
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C The exception operator 

C.1 Introduction 
A theoretical model of a compositional exception operator is proposed in 
this appendix. The semantics of the exception operator does not alter the 
semantics of the CSP operators so that we do not have to redefine the 
CSP operators . 

C.2 Proposed exception handling in CSP 
A process P can face an error on which it should not continue or the 
process gets blocked forever waiting on an event that will never happen 
due to an error in the system. In either case P will behave as STOP. A 
process that behaves suddenly as STOP is often an undesired behaviour 
in programs. One would like to escape from STOP and handle the error 
at hand. Such an escape manifests exception handling.  

CSP offers an interrupt operator that could be used to escape from STOP 
on an internal event. The CSP interrupt operator is depicted as 

 iP EΔ  (1) 

This process behaves as P and on the occurrence of internal event i this 
process will behave as E. Event i is not part of the alphabets of P and E, 
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i.e. i P Eα α∉ ∩  ( Pα  and Eα  are the alphabets of P and E). The exception 
in P or in the system can be represented as an internal event i which is 
intercepted by the interrupt operator and performs a preemption from P 
to E. Process E is the exception handler of P. 

One problem with the interrupt operator is that process E does not know 
about the different exceptions occurred in P and it does not know what 
exceptions to handle. Another problem is that the interrupt operator is 
difficult to implement in software with low performance costs and a 
small memory footprint. Due to the preemption from P to E, the interrupt 
operator should somehow release all channels that are being claimed by 
the child processes in P. Hence, an exception should not cause deadlock 
because an any-to-any channel was claimed and never released. In a 
dynamic network of communicating processes the implementation is 
even more complex. This management will be time consuming and it will 
increase a significant amount of code. 

We define an exception operator Δ  that is a simplified version of the 
interrupt operator Δi  which is able to collect exceptions in the program.  

The proposed exception operation is 

 P EΔ  (2) 

This process behaves as P and on the occurrence of unhandled exceptions 
it will behave as E. A process with unhandled exception behaves as 
STOP for which the exception operator manifests an escape to the 
exception handling process that handles the exception. A process with 
handled exceptions is not in exception and does not require exception 
handling. 

The properties of the exception operator are 

 
if  is not in exception

if  suffers from one or more unhandled exceptions

P P
P E

E P
⎧

Δ ⎨
⎩

 (3) 

The exception operator defines in what way the CSP/CSPP operators 
should cooperate with exceptions. This is orthogonal to the original 
semantics of the CSP/CSPP operators. The arrow on top illustrates 
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explicitly the priority difference between P and E; i.e. E is more urgent 
than P on the occurrence of the exception. This direction can help tracing 
design conflicts on exception handling in process architectures, as 
discussed in Chapter 5. This exception operator treats an exception as an 
event and as a state. 

Unusual situations in the environment can affect the behaviour of 
software. Such an unusual situation can be detected as an exception and 
passed through (or thrown) by channels and barriers. The exception 
affects the process when it reaches the point where it wants to 
communicate with a corrupted (or poisoned) channel or barrier. This 
may also include exceptions, such as a division-by-zero or null pointers, 
which involve internal events. The proposed exception operator can 
capture these kinds of exceptions. 

As previously mentioned, exceptions can occur on communication with 
channels or barriers. For example, consider the following process: 

 ( )c SKIP E→ Δ  (4) 

Event c denotes a channel-end or barrier-end, e.g. a channel-input c?x, 
channel-output c!v, channel-call c.call, channel-accept c.accept, or a 
barrier-sync c.sync. On the occurrence of an exception the environment 
will refuse c and the environment will engage in event ex.c instead. Event 
ex.c is hidden by the exception operator. 

It is useful that the exception handler E knows the nature of the 
exception in order to take the appropriate actions. The proposed 
exception operator collects the trace of exceptions that have been raised 
in P. The trace of exceptions is a shared set, called error, and is passed to 

( )E error . 

 ( )P E P E errorΔ = Δ  (5) 

The exception handler ( )E error  may use error to discover which 
exceptions are involved and should be handled. After handling the 
exception, the exception must be taken from the set error; i.e. 

.error error ex c= −  
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The expression behind the exception operator is described as follows: 

 
( ) ( )

( )

?
,

;
\ ,

read error stop
readE errorEX P

P E write
error SKIP

stop
EXSET

⎛ ⎞→ →⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎧ ⎫⎛ ⎞⎜ ⎟⎜ ⎟ ⎪ ⎪⎜ ⎟Δ = ⎜ ⎟ ⎨ ⎬⎜ ⎟⎜ ⎟⎜ ⎟≠⎝ ⎠⎝ ⎠ ⎪ ⎪⎝ ⎠⎜ ⎟ ⎩ ⎭⎜ ⎟
⎝ ⎠

 (6) 

with error EXCEPTIONS⊆ ∧  and error =  as the initial state of this 
process. Here, EXSET is a process that collects the set of exceptions. Its 
read, write, and stop events are hidden from outside the exception process. 
This process is defined as 

 ( ) ( )( )
( )

? ( ) ! ( )
( )

write e EXSET es e read es EXSET es
EXSET es

stop SKIP
⎛ ⎞→ →= ⎜ ⎟Δ →⎝ ⎠

 (7) 

Event write is used to put an exception to the set and read is used to get 
the set. Event stop will terminate EXSET. 

Process ( )EX P  distinguishes between event c and event ex.c. 

 
( )( )

( )
{ }. after 

( ) \ .
. ! .

ex cc EX P c
EX P ex c

ex c write ex c SKIP

⎛ ⎞→ Δ
⎜ ⎟=
⎜ ⎟→ →⎝ ⎠

 (8) 

Here, ( )c fs P∈ is the first step returning the first communication event of 
P. ( )EX P  operates on the chain of prefixes and excludes termination 
events . The recursive function ( )EX P  is used for tracing exception 
events occurred in P. Process ( )EX P  may engage in ex.c with its 
environment, but ex.c is hidden from other processes. 

The environment decides to engage in event c or in event ex.c, but not 
simultaneously. With this assumption we can replace the interrupt 
operator with an external choice, as described in 

 
( )( )

( )
{ }

 after 
( ) \ .

. ! .

c EX P c
EX P ex c

ex c write ex c SKIP

⎛ ⎞→
⎜ ⎟=
⎜ ⎟→ →⎝ ⎠

 (9) 
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This external choice operator can be efficiently implemented as discussed 
in Chapter 5. 

C.3 Compositional semantics 
Process P can be any composition of simpler processes. It is important 
that these compositions cooperate in gathering exceptions and pass 
through these exceptions to an exception handler higher in the hierarchy. 
This behaviour is part of the exception operator description, as will be 
discussed next. 

On the termination events  of each process the set error must be checked 
whether it is empty or not. In case error is not empty, the process has 
unsuccessfully terminated and otherwise the process has successfully 
terminated. This behaviour is described as 

 
( )
( ) ( )( )

;

; ?

EX Q R

EX Q read error EX R error SKIP

=

→ =
 (10) 

SKIP is performed on the unsuccessful termination of Q and R is 
performed on the successful termination of Q. 

For the parallel composition we can write: 

 ( ) ( ) ( )EX Q R EX Q EX R=  (11) 

The parallel operator collects the exceptions from each branch in the set 
error. 

For the external choice composition we can write: 

 

( )
( ) ( )( )( )
( ) ( )( )( )

; ? . ( )

; ? . ( )

EX Q R

EX Q read error EX R ex fs Q error SKIP

EX R read error EX Q ex fs R error SKIP

=

⎛ ⎞→ ∈
⎜ ⎟
⎜ ⎟→ ∈⎝ ⎠

 (12) 

This description implies that the choice operator will collect all 
exceptions that occurred on the first event in the guarded processes. This 
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is a desired behaviour since the choice operator cannot make a fair choice 
due to exceptions on the first events of the guarded processes.  

The prioritized parallel and prioritized choice operators have similar 
expressions as their non-prioritized counter parts in respectively (11) and 
(12). More generally, we can write the following expressions for ( )EX P  
for each CSP/CSPP operator: 

The sequential process 
0.. 1
; i

i n

P E
= −

⎛ ⎞
Δ⎜ ⎟

⎝ ⎠
 is 

 ( )( )( )
0.. 1 0.. 1

?; ;i i
i n i n

EX P read error EX P error SKIP
= − = −

⎛ ⎞
= → =⎜ ⎟

⎝ ⎠
 (13) 

The parallel process 
0.. 1

i
i n

P E
= −

⎛ ⎞
Δ⎜ ⎟

⎝ ⎠
 is 

 ( )
0.. 1 0.. 1

i i
i n i n

EX P EX P
= − = −

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 (14) 

The alternative (choice) process 
0.. 1

i
i n

P E
= −

⎛ ⎞Δ⎜ ⎟
⎝ ⎠

 for one recursion is 

 
( )

( )

0
1.. 1

1.. 1

0 0

0

1.. 1 1.. 1

; ? . ( )

; ? .

i
i n

i
i n

i i
i n i n

EX P P

EX P

EX P read error ex fs P error

SKIP

EX P

EX P read error ex fs P error

SKIP

= −

= −

= − = −

⎛ ⎞⎛ ⎞ =⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟
⎜ ⎟→ ∈⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟

⎛ ⎞ ⎛ ⎞⎜ ⎟→ ∈⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠
⎜ ⎟⎜
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (15) 
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with ( ) ( ) ( )1 2 1
1.. 1

. . , . ,..., .i n
i n

ex fs P error ex fs P ex fs P ex fs P error−
= −

⎛ ⎞∈ = ∈⎜ ⎟
⎝ ⎠

 

The prioritized parallel process 
0.. 1

i

i n

P E
= −

⎛ ⎞
Δ⎜ ⎟⎜ ⎟

⎝ ⎠
 is 

 ( )
0.. 1 0.. 1

i i

i n i n

EX P EX P
= − = −

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠
 (16) 

The prioritized alternative (choice) process 
0.. 1

i
i n

P E
= −

⎛ ⎞Δ⎜ ⎟
⎝ ⎠

 for one recursion 

is 

 
( )

( )

0
1.. 1

1.. 1

0 0

0

1.. 1 1.. 1

; ? . ( )

; ? .

i
i n

i
i n

i i
i n i n

EX P P

EX P

EX P read error ex fs P error

SKIP

EX P

EX P read error ex fs P error

SKIP

= −

= −

= − = −

⎛ ⎞⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟→ ∈
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

⎛
⎜

⎛ ⎞ ⎛ ⎞⎜→ ∈⎜ ⎟ ⎜ ⎟⎜⎝ ⎠ ⎝ ⎠⎜
⎜
⎝

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎛ ⎞⎞⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎠⎝ ⎠⎝ ⎠

 (17) 

with ( ) ( ) ( )1 2 1
1.. 1

. . , . ,..., .i n
i n

ex fs P error ex fs P ex fs P ex fs P error−
= −

⎛ ⎞
∈ = ∈⎜ ⎟

⎝ ⎠
 

Nested exception handling is incorporated, as in 

 ( )( )0 1 2 0 1 2
0..2

i
i

P E E E P E E E P E
=

Δ Δ Δ = Δ Δ Δ = Δ  (18) 
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C.4 Livelock and deadlock 
An exception can cause a STOP indicating a livelock or deadlock for 
which the exception operator does not manifest an escape. Consider the 
following example,  

 ( )
{ }

( )
d

e d P f d Q E⎛ ⎞→ → → → Δ⎜ ⎟
⎝ ⎠

 (19) 

Assume event f fails and therefore the environment offers ex.f instead; 
.error ex f= . The right hand side of  will SKIP and will not engage in d. 

The left hand side will block forever on d and consequently the entire 
process behaves as STOP, as in 

 
( )

{ }
( ) ( )after  and .. e ex f

d
e STOP ex f SKIP E STOP SKIP E

STOP E STOP

⎛ ⎞→ → Δ ⎯⎯⎯⎯⎯→ Δ⎜ ⎟
⎝ ⎠
= Δ =

(20) 

This is a correct behaviour. However, the desired behaviour is that E 
takes over control so that the program can continue without deadlocking 
or livelocking. A possible solution is 

 ( ) ( ) ( )( )( )( )( )e d P f d Q refuse d E→ → → → Δ Δ  (21) 

When f fails then .error ex f=  and the inner exception handler performs 
( )refuse d , which is a function that will cause d to fail also. Successively, 

the left hand process will fail on d and exception event ex.d will happen 
instead. Then E will be performed with . , .error ex f ex d= .  

( ) ( )( ) ( ) ( ), . .. . after e ex f and ex de ex d SKIP ex f SKIP E SKIP SKIP E

E

→ → → Δ ⎯⎯⎯⎯⎯⎯→ Δ

=
 

In order to avoid livelock or deadlock one should refine the design of the 
process architecture with exception operators and ( )|refuse channel barrier  
functions. This technique is also known as poisoning channels or barriers. 

 



 

A P P E N D I X D 

Examples 
D Examples 

D.1 Producer/Consumer example 
An example of a producer process and a consumer process connected via 
a generic data channel is described in this section. The Producer class 
defines the producer process that sends a value to the consumer process. 
Figure D-1 depicts a class diagram of the producer/consumer 
communication relationship. A channel is stereotyped with <<channel>>. 
The channel input and output interfaces are stereotyped 
<<channelinput>> and <<channeloutput>>. Stereotypes provide constraints 
in UML diagrams for model checking. 

 

Figure D-1 UML class diagram of a producer/consumer 
communication relationship. 

<<channel>> 
Channel_of_Object 

+ write(Object object) : Object 
+ read(Object object :  Object 

ChannelOutput_of_Object 

<<channelinput>>   

ChannelInput_of_Object 

<<channeloutput>> 

<<process>> 
Producer 

+ run() : void 
+ … 

<<process>> 
Consumer 

+ run() : void 
+ … 
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The Producer class defines the producer process that sends a value to the 
channel. See Listing D-1. The Consumer class defines the consumer process 
that receives the value and prints it on screen. See Listing D-2. The 
producer and consumer run in parallel, see Listing D-3 and Section 4.6.1. 
Both processes terminate when they have communicated via the channel. 

import csp.lang.*; 

import csp.lang.Process; 

import csp.lang.Integer; 

 

class Producer implements Process 

{ 

 ChannelOutput_of_Object chanout; 

 int value = -1; 

 

 Producer(ChannelOutput_of_Object channel) { 

  chanout = channel; 

 } 

 

 public void run() 

  throws ExceptionSet { 

   Integer obj = new Integer(); 

   ... 

   obj.value = value; 

   chanout.write(obj); 

   ... 

 } 

 

 public void setValue(int v) { 

  value = v; 

 } 

} 

Listing D-1 Producer class. 

class Consumer implements Process 

{ 

 ChannelInput_of_Object chanin; 

 int value = -1; 

 

 Consumer(ChannelInput_of_Object channel) { 

  chanin = channel; 

 } 

 

 public void run() 
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  throws ExceptionSet { 

   Integer obj = new Integer(); 

   ... 

   obj = chanin.read(obj); 

   value = obj.value; 

   ... 

   System.out.println(“value = “+value); 

 } 

 

 public int getValue() { 

  return value; 

 } 

} 

Listing D-2 Consumer class. 

In the consumer process the read(..) method has a double function. The 
read(..) may use the specified obj argument to copy data in or if that 
fails for some reason a clone is returned. The consumer has become 
independent from the message delivery mechanisms pass-by-value or 
pass-by-reference. 

public static void main(String[] args) { 

 Channel_of_Object channel = new Channel_of_Object(); 

 

 Parallel par = new Parallel(new Process[] {  

  new Producer(channel), 

  new Consumer(channel) 

 }); 

 

 try { 

  par.run(); 

 } catch (ExceptionSet es) { 

  ... exception handling 

 } 

} 

Listing D-3 Producer and consumer in parallel. 

D.2 Client/Server example 
In this section, the coding of a client process and a server process that 
communicate via a call channel is shown. This example shows that a 
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server process can have multiple interfaces. Each interface provides a 
different view of services for different types of clients. Here, Server 
implements two interfaces: OnOff and OtherService. The server process is 
given in Listing D-4 and the two interfaces are given in Listing D-5 and 
Listing D-6. Their implementations are not shown. The call channel is 
defined by the MyCallChannel class and its relationships with other classes 
and interfaces are shown in Figure 4-6. 

import csp.lang.*; 

import csp.lang.Process; 

 

public class Server implements Process, OnOff, OtherServices  

{ 

 MyCallChannel channel; 

 

 public Server(MyCallChannel channel) { 

  this.channel = channel; 

 } 

 

 public void run() 

  throws ExceptionSet { 

  ... perform server task 

  channel.accept(); 

  ... 

 } 

 

 public void on() { ... } 

 

 public void off() { ... } 

 

 public XYZ calculate(..) 

  throws ExceptionSet { ...; return ...; } 

 

 public void add(..) { ... } 

 

 public void remove(..) { ... } 

 

 public void setGain(..) { ... } 

 

 public double getGain() { ...; return ...; } 

} 

Listing D-4 The server process. 
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Although these methods are publicly accessible they should only be 
invoked when the process plays the role of a process instance (in 
between runs) or otherwise only through call channels that offer these 
services. 

The interfaces OnOff and OtherServices are defined as: 

public interface OnOff { 

 public void on(); 

 public void off(); 

} 

Listing D-5 The OnOff service interface. 

public interface OtherServices { 

 public XYZ calculate(..) throws ExceptionSet; 

 public void add(..); 

 public void remove(..); 

 public void setGain(..); 

 public double getGain(); 

} 

Listing D-6 The OtherServices service interface. 

The run() method is not part of call interfaces but belongs to the process 
instance interface as specified by the Process interface in Listing 4-1. 
Thus, a call channel does not implement the Process interface. 

The class diagram of the client/server communication relationship is 
given in Figure D-2. 

The call channel is stereotyped with <<callchannel>>. The channel call 
and accept interfaces are stereotyped <<channelcall>> and 
<<channelaccept>>. 

The call channel class is given in Listing D-7. MyCallChannel inherits 
CallChannel and all interfaces. Each method has a constant tag that is 
required for the accept(..) methods to let the server process know about 
the method that was accepted and performed. The process argument is 
the reference to the server process. This argument is usually this; the 
server process itself. On acceptance the tag (or number) of the method 
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that was performed is returned. The tag can be useful for implementing a 
state machine. 

 

Figure D-2 UML class diagram of the client/server communication 
relationship with the server process implementing the 
call interfaces OnOff and OtherServices. 

The join(int method) synchronizes the caller (client) and callee (server). 
On rendezvous, one thread of control will invoke the method on the 
server process and both processes continue after fork(). This behaves as 
if the server process performs the method in rendezvous.  

import csp.lang.CallChannel; 

 

public class MyCallChannel extends CallChannel 

 implements OnOff, OtherServices { 

 public static final int ON        = 0; 

 public static final int OFF       = 1; 

 public static final int CALCULATE = 2; 

 public static final int ADD       = 3; 

 public static final int REMOVE    = 4; 

 public static final int SETGAIN   = 5; 

 public static final int GETGAIN   = 6; 

 

<<callchannel>> 
MyCallChannel 

<<process>> 
Server 

+ run() : void 
+ on() : void 
+ off() : void 
+ calculate(int x, int y) : int 
+ … 

+ on() : void 
+ off() : void 
+ calculate(int x, int y) : int 
+ … 

<<channelaccept>> 

CallChannelAccept 

<<process>> 
Client 

+ run() : void 
+ … 

  

<<channelcall>> 

OnOff, OtherServices 

OnOff 

<implements> 

OtherServices 

<implements> 

+ on() : void 
+ off() : void 

+ calculate(int x, int y) : int 
+ … 



D.2 Client/Server example 

 

293 

 public void on() { 

  join(ON); 

  ((OnOff)process).on(); 

  fork(); 

 } 

 

 public void off() { 

  join(OFF); 

  ((OnOff)process).off(); 

  fork(); 

 } 

 

 public XYZ calculate(..) 

 throws ExceptionSet { 

  join(CALCULATE); 

  XYZ object = ((OtherServices)process).calculate(..); 

  fork(); 

  return object; 

 } 

 

 public void add(..) { 

  join(ADD); 

  ((OtherServices)process).add(); 

  fork(); 

 } 

 

 public void remove(..) { 

  join(REMOVE); 

  ((OtherServices)process).remove(); 

  fork(); 

 } 

 

 public void setGain(..) { 

  join(SETGAIN); 

  ((OtherServices)process).setGain(); 

  fork(); 

 } 

 

 public double getGain() { 

  join(GETGAIN); 

  double value = ((OtherServices)process).getGain(); 

  fork(); 

  return value; 

 } 

} 

Listing D-7 Call channel MyCallChannel class. 
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The CallChannel class implements a few default accept(..) methods: 

int accept(csp.lang.Process process) 

 throws ExceptionSet 

 - accept any method 

int accept(int method, csp.lang.Process process) 

 throws ExceptionSet 

 - accept only specified method 

int accept(int[] methods, csp.lang.Process process) 

 throws ExceptionSet 

 - accept any method within the specified method range 

These methods are implemented in the CallChannel base-class and are 
specified in the CallChannelAccept interface, see Listing D-8. The 
accept(..) methods should exclusively be used by the server process and 
no other methods should be called by the server on the call channel. 

public interface CallChannelAccept { 

 public int accept(csp.lang.Process process) 

  throws ExceptionSet; 

 public int accept(int method, csp.lang.Process process) 

  throws ExceptionSet; 

 public int accept(int[] methods, csp.lang.Process process) 

  throws ExceptionSet; 

} 

Listing D-8 Call channel accept interface. 

In Listing D-9, a client class is shown. The client and server are executed 
in parallel as shown in Listing D-10. 

import csp.lang.*; 

import csp.lang.Process; 

 

public class Client implements Process 

{ 

 OnOff channel; 

 

 public Client(MyCallChannel channel) { 
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  this.channel = channel; 

 } 

 

 public void run() 

  throws ExceptionSet { 

  ... 

  channel.on(); 

  ... 

  channel.calculate(); 

  ... 

  channel.off(); 

  ... 

 } 

} 

Listing D-9 Client process. 

public static void main(String[] args) { 

 MyCallChannel channel = new MyCallChannel(); 

 

 Client client = new ClientA(channel); 

 Server server = new Server(channel); 

 

 Parallel par = new Parallel(new Process[] { 

  client, 

  server 

 }); 

 

 try { 

  par.run(); 

 } catch (ExceptionSet es) { 

 ... exception handling 

 } 

} 

Listing D-10 Client-server example. 

The server process is depicted in Listing D-4. The parallel construct is 
elaborated in Section 4.6.1. 

The use of data channels and call channels can be mixed as illustrated in 
the following example. Consider a mechatronic system with an electrical 
motor, which should be turned on and off by an embedded control 
system.. The on() method turns on the electrical motor and the off() 
method turns it off. Although the server process offers these services; it 
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does not control the hardware directly to turn the motor on or off. 
Instead, the server process uses a data channel that performs the actual 
hardware control. 

D.3 Barrier Example 
The following example shows two processes that synchronize on a 
barrier two times and this illustrates the differences between sync() and 
sync(process). 

import csp.lang.*; 

import csp.lang.Process; 

 

public class SyncWriter implements Process 

{ 

 Process process; 

 Barrier barrier; 

 

 public SyncWriter(ChannelOutput_of_Object channel,Barrier barrier) { 

  this.barrier = barrier; 

  proces = new Producer(channel); 

 } 

 

 public void run() 

  throws ExceptionSet { 

  ... 

  barrier.sync();     // sync example 1 

  ... 

  process.setValue(100);   // sync example 2 

  barrier.sync(process); 

  ... 

 } 

} 

 

public class SyncReader implements Process 

{ 

 Process process; 

 Barrier barrier; 

 int value 

 

 public SyncReader(ChannelInput_of_Object channel, Barrier barrier) 

  this.barrier = barrier; 

  proces = new Consumer(channel); 
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 } 

 

 public void run() 

  throws ExceptionSet { 

  ... 

  barrier.sync();     // sync example 1 

  ... 

  barrier.sync(process);   // sync example 2 

  value = process.getValue(); 

  ... 

 } 

} 

 

public static void main(String[] args) { 

 Channel_of_Object channel = new Channel_of_Object(); 

 Barrier           barrier = new Barrier(2); 

 

 Process syncwriter = new SyncWriter(channel, barrier); 

 Process syncreader = new SyncReader(channel, barrier); 

 

 Parallel par = new Parallel(new Process[] {  

  syncwriter, 

  syncreader, 

 }); 

 

 try { 

  par.run(); 

 catch (ExceptionSet es) { 

 ... exception handling 

 } 

} 

Listing D-11 Barrier example: embedded example 1 performs a barrier 
synchronization without communication and embedded example 2 
communicates on the barrier synchronization. 

The processes SyncWriter and SyncReader will synchronize on the first 
sync() and secondly they will synchronize on sync(process) and the 
barrier will execute each process at each end of the barrier. Successively, 
both processes will synchronize on channel. In this case, the channel 
performs communication (event) and the parallel construct in the barrier 
performs the barrier synchronization (event). The processes Producer and 
Consumer are given in Listing D-1 and Listing D-3. 
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D.4 Additional Guards 

D.4.1 Skip guards 

In circumstances where the alternative construct should continue when 
no channel is ready then a skip guard provides this behaviour. A skip 
guard is a guard that does not wait for an event to be ready. Skip guards 
can be created by one of the following constructors: 

Unconditional skip guards 

Guard() is always true and performs a 
skip if selected 

Guard(process) is always true and performs the 
process if selected 

CTJ provides a special process Skip that can play the role of a process or 
the role of a guard, as in, 

Guard(new Skip()) is always true and performs a 
skip if selected; this is the same as 
Guard() in the role of a guard 

Skip() is always true and performs a 
skip if selected; this is the same as 
Guard(new Skip()) in the role of a 
guard 

Conditional skip guards 

Guard(condition) performs skip if selected 

Guard(condition, process) performs process if selected 

The conditional skip guards are, 
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Guard(condition, new Skip()) performs a skip if selected 

Skip(condition) performs a skip if selected 

D.4.2 Timeout guards 

A process can also be guarded by a timeout event. A timeout guard can 
be specified by one of the following constructors: 

Unconditional timeout guards 

Guard(time) becomes ready after the specified 
time and performs a skip if 
selected 

Guard(time, process) becomes ready after the specified 
time and executes the specified 
process if selected 

Timeout(time) same as Guard(time) 

Timeout(time, process) same as Guard(time, process) 

Conditional timeout guards 

Guard(condition, time) performs a skip after the 
specified time and if selected 

Guard(condition, time, process) performs the specified process 
after the specified time and if 
selected 

Timeout(condition, time) same as Guard(condition, time) 

Timeout(condition, time, process) same as Guard(condition, time, 

process) 
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When multiple timeout guards in the guard list of the alternative 
construct are specified then the guard with the smallest timeout will be 
active. When there are multiple timeout guards with the smallest and 
equal timeout then one will be arbitrarily selected. One timeout guard 
per alternative construct is recommended. 

D.5 State handling methods 
After the construction of a process, the state handling methods are used 
to dynamically set or get the process state before or after its execution. 

In CSP diagrams, the ends of the solid arrows attached to a process are 
implemented by the constructor. The ends of the open arrows are 
implemented by the state handling methods. The use of the constructor is 
elaborated in Chapter 4. In this section, the use of the state handling 
methods for implementing the open arrows is illustrated. 

Figure D-3 is a copy of Figure 3-11 with visible port labels attached at the 
ends of the open arrows. As discussed in Section 3.5.3, the causality 
determines that process f must be performed before g. 

 

Figure D-3 Example of state initialization. 

The code construct that results from Figure D-3 is given in Listing D-12. 
The variables and the process instances are declared on top of the 
program. At this stage, input variables are initiated with an initial value. 

float v, w=1.5, x=0.1, y=2.1,z; 

F f = new F(); 

z:float 
f g 

x=0.1:float y=2.1:float w=1.5:float 

 
a:float 

b:float 

c:float 

m:float 

n:float 
p:float 

o:float 
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G g = new G(); 

... 

f.set_a(x); 

f.set_b(y); 

f.run(); 

z = f.get_c(); 

... 

g.set_m(w); 

g.set_n(z); 

g.set_o(y); 

g.run(); 

v = g.get_p(); 

Listing D-12 Example of initiating processes using state handling methods. 

The constructor is a special initiate method, which initiates the process 
instance after allocation in memory. In CTJ, the constructor is used to 
assign channel-ends and barrier-ends to the process during its 
construction. This can be very-well be done by state handling methods 
before the process is executed.  

D.6 ARTY Implementation 
The implementation of the top network builder for ARTY and its sub-
processes are given in this section. 

D.6.1 Top network builder 

The CSP diagram of Figure 6-8 and Figure 6-9 describes the top network 
builder of this control application. The CSP diagram translates to the 
main source code in Listing D-13. This top network builder declares 
channels, link drivers (external channel), variables, processes, and 
constructs, which are required to build the top-level network of 
communicating processes. In this case, the top network builder is the 
only hardware dependent process in the software since it is the only one 
that sets up hardware dependent objects. All other processes are 
hardware independent since they solely use channels. 
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In order to keep the listings readable we will omit the header files and 
the inclusion of headers in the source code. 

int main(void) { 

 //--- external channels declarations (Figure 6-8) 

 ChannelIn<double>  *feedback_leftspeed  = new Encoder( Encoder::LEFT); 

 ChannelIn<double>  *feedback_rightspeed = new Encoder(Encoder::RIGHT); 

 ChannelOut<double> *steer_leftspeed     = new Motor(Motor::LEFT); 

 ChannelOut<double> *steer_rightspeed    = new Motor(Motor::RIGHT); 

 

 //--- internal channels declarations (Figure 6-8) 

 Channel<double> *setpoint_leftspeed  = new Channel<double>(); 

 Channel<double> *setpoint_rightspeed = new Channel<double>(); 

 

 //--- processes declarations (Figure 6-9,Figure 6-8) 

 SequenceControllerProcess   *scProc = new SequenceControllerProcess( 

  setpoint_leftspeed, setpoint_rightspeed); 

 MotorControllerLeftProcess  *mclProc = new MotorControllerLeftProcess( 

  setpoint_leftspeed, feedback_leftspeed, steer_leftspeed); 

 MotorControllerRightProcess *mcrProc= new MotorControllerRightProcess( 

  setpoint_rightspeed, feedback_rightspeed, steer_rightspeed); 

 

 //--- compositional constructs declarations (Figure 6-9) 

 Parallel *par = new Parallel(); 

 par->add(mclProc); 

 par->add(mcrProc); 

 

 PriParallel *pripar = new PriParallel(); 

 pripar->add(par); 

 pripar->add(scProc); 

 

 //--- set timed events (Figure 6-8) 

 //    (channel, start_sec, start_usec, interval_sec, interval_usec) 

 System::at(feedback_leftspeed,  0, 500000, 0, 10000); 

 System::at(feedback_rightspeed, 0, 500000, 0, 10000); 

 System::at(steer_leftspeed,  0, 500000, 0, 10000); 

 System::at(steer_rightspeed, 0, 500000, 0, 10000); 

 

 //--- run the process 

 pripar->run(); 

 

 //--- delete all instances 

 delete feedback_leftspeed; 

 delete feedback_rightspeed; 

 ...  
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 return 0; 

} 

Listing D-13 Top Network builder or main source code. 

This network builder is further detailed by its child processes. The child 
processes are described in the next sections. 

D.6.2 MotorControllerLeftProcess 

Process mclProc in Figure 6-8 and Figure 6-9 is described by process class 
MotorControllerLeftProcess. The source code is given in Listing D-14. 

The constructor specifies the process-interface of ports to which this 
process can be connected via channels to other processes. The ChannelIn 
and ChannelOut types specify whether a process can respectively read or 
write on a channel. Reading and writing on respectively ChanOut and 
ChanIn channels is prohibited by a compiler check. These ports are 
generic whereby the type between brackets, i.e. <double>, specifies that 
the channel only accepts data of type double. The references of channels 
are kept local so that the run() method can read or write on these 
channels. In the constructor the arrays of indexed channels are declared 
and they are private to the process. The constructor assigns the named 
channels to the indexed channels. Also the 20-process mcl20Proc is 
declared and it is connected to other processes via the array of input-
channels and they array of output-channels. 

/** Construct MotorControllerLeftProcess. **/ 

MotorControllerLeftProcess::MotorControllerLeftProcess( 

ChannelIn<double> *setpoint, ChannelIn<double> *feedback, 

ChannelOut<double> *steer) { 

 chanin  = ChannelIn<double> * [2]; 

 chanout = ChannelOut<double> * [1]; 

 

 chanin[0]  = setpoint; 

 chanin[1]  = feedback; 

 chanout[0] = steer; 

  

 mcl20Proc = new MotorControllerLeft20Process(chanin, chanout); 

} 
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/** Process body. **/ 

void MotorControllerLeftProcess::run(void) { 

 while(true) { 

  mcl20Proc->run(); 

 } 

} 

 

/** Destruct MotorControllerLeftProcess. **/ 

MotorControllerLeftProcess::~MotorControllerLeftProcess(void) { 

 delete mcl20Proc; 

 delete chanin; 

 delete chanout; 

} 

Listing D-14 Process class MotorControllerLeftProcess. 

The run() method simply performs the 20-process in an infinite loop as 
specified by the composition diagram in Figure 6-11. The destructor 
~MotorControllerLeftProcess deletes all objects and processes that were 
created by its constructor. 

D.6.3 MotorControllerLeft20Process 

The 20-process mcl20Proc is dedicated to invoking methods on the sub-
model object. Its process class MotorControllerLeft20Proces is shown in 
Listing D-15. The sub-model object mclSubmodel is created and initialized. 
The alternative construct as specified in Figure 6-11 is declared by the 
constructor and performed by the switch(..) {..} clause in the run() 
method. 

/** Construct MotorControllerLeft20Process. **/ 

MotorControllerLeft20Process::MotorControllerLeft20Process( 

ChannelIn<double> **chanin, ChannelOut<double> **chanout) { 

 this->chanin = chanin; 

 this->chanout = chanout; 

 this->u = (double *) malloc (2 * sizeof (double)); 

 this->y = (double *) malloc (1 * sizeof (double)); 

 

 //--- Create and initialize Submodel 

 mclSubmodel = new MotorControllerLeft; 

 mclSubmodel->Initialize(this->u, this->y, 0); 

 

 //--- Create Alternative construct 
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 prialt = new PriAlternative(chanin[0], chanin[1], NULL); 

} 

 

/** Process body. **/ 

void MotorControllerLeft20Process::run(void) { 

 switch(prialt->select()) { 

  case 0: // on setpoint 

   chanin[0]->read(&(u[0])); 

   break; 

  case 1: // on feedback 

   chanin[1]->read(&(u[1])); 

   mclSubmodel->Calculate (u, y); 

   chanout[0]->write(&(y[0])); 

   break; 

 } 

} 

 

/** Destruct MotorControllerLeft20Process. **/ 

MotorControllerLeft20Process::~MotorControllerLeft20Process(void) { 

 free(u); 

 free(y); 

 delete mclSubmodel; 

 delete prialt; 

} 

Listing D-15 Process class MotorControllerLeft20Process. 

D.7 JIWY Implementation 
The implementation of the top network builder for JIWY and its sub-
processes are given in this section. 

D.7.1 Top network builder 

The main source code is derived from the context diagram, see Figure 
6-16 and Figure 6-18. The source code is given in Listing D-16. Some 
parts are discussed separately. The channel declarations are discussed 
first. 

int main(void) { 

 //--- external channels declarations 
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 // Analog joystick 

 AnalogJoystick *joystick = new AnalogJoystick(); 

 ChannelIn<double> *joystick_horizontal = new AnalogJoystickX(joystick); 

 ChannelIn<double> *joystick_vertical   = new AnalogJoystickY(joystick); 

 ChannelOut<int>   *joystick_buttons    = \ 

  new AnalogJoystickButtons(joystick); 

 

 //--- DAQSTC, National Instruments 6024E IO Board 

 DAQSTC *daqstc = new DAQSTC(); 

 daqstc->Initialise(); 

 

 // Analog Output 

 daqstc->SetAOTM(AOTM::Primary, AOTM::CPUDriven); 

 ChannelOut<double> *control_horizontal = daqstc->GetDAC(DAC::DAC0); 

 ChannelOut<double> *control_vertical   = daqstc->GetDAC(DAC::DAC1); 

 

 // Two counters for sensors 

 ChannelIn<double> *feedback_horizontal = \ 

  daqstc->GetCounter(GPC::Counter0); 

 ChannelIn<double> *feedback_vertical   = \ 

  daqstc->GetCounter(GPC::Counter1); 

 

 //--- internal channels declarations (‘chan’ prefix to variable names) 

       Figure 6-18 

 Channel<double> leftmax_h  = new ChannelVar<double>; 

 Channel<double> rightmax_h = new ChannelVar<double>; 

 Channel<double> leftmax_v  = new ChannelVar<double>; 

 Channel<double> rightmax_v = new ChannelVar<double>; 

 

 //--- processes declarations 

 ... see Listing D-17. 

 

 //--- compositional constructs declarations 

 ... see Listing D-18. 

 

 //--- set timed events 

 ... see Listing D-19. 

 

 //--- run the process 

 par->run(); 

 

 //--- delete all instances 

 ... 

} 

Listing D-16 Top Network Builder: declaration of internal and external 
channels. 



D.7 JIWY Implementation 

 

307 

Firstly, the external channels (i.e. link drivers) are declared. The 
communication relationships leftmax_h, rightmax_h, leftmax_v, and 
rightmax_v are prefixed by chan. These become ChannelVar channels 
which are unblocking channels representing synchronized shared 
variables. These special channels are useful for communication between 
processes in a sequential composition. ChannelVar is a sub-class of Channel 
and therefore a ChannelVar can replace a channel or a ChannelVar can be 
replaced by another channel in code; they can be intertwined because 
they have the same channel-interface. The process instance interface does 
not specify state handling methods, otherwise state handling methods 
(open arrows) could have been used instead of ChannelVar channels. The 
ChannelVar channels are used to illustrate that buffered data-channels are 
not restricting to strictly parallel relationships in case processes are 
reused. 

The processes are declared in the main source file as follows: 

ControlHorizontal *motionControlH =  new ControlHorizontal( 

  joystick_horizontal, joystick_buttons, feedback_horizontal, 

  control_horizontal, leftmax_h, rightmax_h); 

ControlVertical   *motionControlV =  new ControlVertical( 

  joystick_vertical, joystick_buttons, feedback_vertical, 

  control_vertical, leftmax_v, rightmax_v); 

VelocityControlLeftHorizontalProcess  *alignLH = new  

  VelocityControlLeftHorizontalProcess(feedback_horizontal, 

  control_horizontal, leftmax_h); 

VelocityControlRightHorizontalProcess *alignRH = new  

  VelocityControlRightHorizontalProcess(feedback_horizontal, 

  control_horizontal, rightmax_h); 

VelocityControlLeftVerticalProcess    *alignLV = new 

  VelocityControlLeftVerticalProcess(feedback_vertical,  

  control_vertical, leftmax_v); 

VelocityControlRightVerticalProcess   *alignRV = new  

  VelocityControlRightVerticalProcess(feedback_vertical, 

  control_vertical, rightmax_v); 

HomingHorizontal *homingH = new HomingHorizontal(feedback_horizontal, 

  control_horizontal, leftmax_h, rightmax_h); 

HomingVertical   *homingV =  new HomingVertical(feedback_vertical, 

  control_vertical, leftmax_v, rightmax_v); 

Listing D-17 Declaration of processes. 
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The arguments correspond to the port names of the process-interface for 
each process. This is consistent with the communication diagram of the 
process architecture. 

The compositional construct as specified in Figure 6-18 is coded with 
CTC++ in Listing D-18. 

Sequential *seq_h = new Sequential(alignLH, alignRH, motionControlH,  

  homingH, NULL); 

Sequential *seq_v = new Sequential(alignLV, alignRV, motionControlV,  

  homingV, NULL); 

Parallel   *par   = new Parallel(seq_h, seq_v, NULL); 

Listing D-18 Declaration of compositional constructs. 

The environmental process is set to a particular timing so that it will 
accept events at certain moment in time with periodical intervals. The 
sampling time for the horizontal control loop Tsh and for the vertical 
control loop Tsv are specified in the communication diagram on the timed 
external channels. See @Tsh for the external channels feedback_horizontal, 
joystick_horizontal, and control_horizontal in Figure 6-16. For 
example, we tested with Tsh = 100000 μs (=10 Hz) and Tsv = 10000 μs 
(=100 Hz).The code fragment in Listing D-19 must be include before the 
par->run() in the main source file. See Listing D-18. 

System::at(feedback_horizontal, starttime, Tsh); 

System::at(joystick_horizontal, starttime, Tsh); 

System::at(control_horizontal, starttime, Tsh); 

System::at(feedback_vertical, starttime, Tsv); 

System::at(joystick_vertical, starttime, Tsv); 

System::at(control_vertical, starttime, Tsv); 

Listing D-19 Timing initialization part. 

The starttime is set to a value that is long enough for the first events to 
occur after all initializations has completed. We set the starttime to 10 
ms. 

The timed channels will throw a TimeoutException when processes do not 
arrive on the channel before the environmental process is willing to 
engage in the event. In this case, processes will terminate unsuccessfully 
and exceptions must be handled. JIWY is hard real-time and the PC is 
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fast enough so that timeout-exceptions did not occur. We omit exception 
handling, which is further discussed in (Engelen, 2004). Exception 
handling is an ongoing topic for further research. 

The entire process will be executed by invoking par->run(). Thus before 
the run() method of the top-level construct is invoked, all processes, 
channels, constructs, timing, and objects have been prepared. Once this 
run() method is invoked, the real-time run bodies of the processes will be 
performed accordingly to the compositional relationships in the CSP 
diagrams. After the top run() method terminates it can be invoked again 
or the declared entities can be deleted. 

D.7.2 Motion controller process 

Process motionControlH is depicted in Figure 6-19 and Figure 6-20. The 
process-interface of motionControlH is specified by the constructor in 
Listing D-20. This constructor assigns its ports to the ports of the child 
processes. The internal channels for setpoint, stop, and zero are declared. 
Also the 20-process servoHorizontal is declared and connected to the 
chanin and chanout channel arrays. 

PositionControllerHorizontal::PositionControllerHorizontal( 

 ChannelIn<double> *joystick_axis, ChannelIn<double> *joystick_buttons, 

 ChannelIn<double> *feedback, ChannelOut<double> *control,  

 ChannelIn<double> *leftmax, ChannelIn<double> *rightmax) { 

 

 //--- create channel-input array and a channel-output array 

 this->chanin  = new ChannelIn<double> * [4]; 

 this->chanout = new ChannelOut<double> * [2]; 

 

 chanin[0]  = leftmax; 

 chanin[1]  = rightmax; 

 chanin[2]  = feedback; 

 chanin[3]  = joystick_axis; 

 chanout[0] = NULL; 

 chanout[1] = control; 

 

 //--- create the 20-process 

 servoHorizontal = new PositionControllerHorizontal20Process( 

   chanin, chanout); 
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 //--- set up the alternative construct process 

 prialt = new PriAlternative(); 

 alt->add(joystick_buttons); // first preference 

 alt->add(feedback);         // second preference 

} 

 

void PositionControllerHorizontal::run(void) { 

 int status = 0; 

 double zero = 0.0; 

 do { 

  switch(prialt->select()) { 

   case 0: //--- controller process 

     servoHorizontal->run(); 

    break; 

   case 1: //--- stop button process 

    joystick_buttons->read(&status); 

    break; 

  } 

 } while (status != 2); 

 //--- release output by setting to zero 

 control->write(&zero); 

} 

 

PositionControllerHorizontal::~PositionControllerHorizontal() { 

 ...destruct all objects and processes 

} 

Listing D-20 Process class PositionControllerHorizontal. 

Here status and zero are variables. This is determined by the ?- and !-
processes in Figure 6-19. Because process servoHorizontal is a 20-process 
the channels must be mapped on chanin[] and chanout[] arrays. This 
process is generated by 20-sim and the C++ template. The switch(alt-
>select()) {} clause in the run() body performs the alternative 
construct. The alternative construct chooses between feedback and 
joystick_buttons with preference to joystick_buttons so that one can 
always stop the controller. 

D.7.3 Alignment controller process 

The alignment process alignH in Figure 6-21 and Figure 6-22 is coded in 
Listing D-21. Process vleftHorizontal is the velocity controller of the 
alignment process. 
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VelocityControlLeftHorizontal::VelocityControlLeftHorizontal( 

 ChannelIn<double> *feedback, ChannelOut<double> *control,  

 ChannelIn<double> *max) { 

 

 //--- create variable channel 

 stop_ = new ChannelVar<double>; //!! 

 

 //--- global variables 

 double stop; 

 

 //--- create channel-input array and a channel-output array 

 this->chanin  = new ChannelIn<double> * [1]; 

 this->chanout = new ChannelOut<double> * [3]; //!! [3]->[2] 

 chanin[0]  = feedback; 

 chanout[0] = control; 

 chanout[1] = max; 

 chanout[2] = stop_;     //!! 

 

 //--- create the 20-process 

 vleftHorizontal = new VelocityControlLeftHorizontal20Process( 

   chanin, chanout); 

} 

void VelocityControlLeftHorizontal::run(void) { 

 do { 

  vleftHorizontal->run(); 

  stop_->read(&stop);    //!! 

 } while (!stop); 

} 

 

VelocityControlLeftHorizontal::~VelocityControlLeftHorizontal() { 

 ...destruct all objects and processes 

} 

Listing D-21 Run body of alignment process. 

Here, stop is a variable with a channel-interface that enables variable 
sharing between sequential processes. The channel name is suffixed with 
a ‘_’ to distinguish between the channel stop_ and the variable stop. This 
is not an exact translation of the CSP diagram. The ChannelVar 
implementation should be replaced by state handling methods as 
described in Appendix D.5. The C++ templates for 20-sim have not yet 
been adapted to support state handling methods. We left the ChannelVar 
implementation in here to illustrate that buffered data-channels can be 
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used to connect processes that are performed in sequence. This increases 
the reusability of existing processes in process architectures. 

The use of state handling methods would include the following code to 
the previous code in Listing D-21. The //!! Statements must be removed 
or changed. 

public void setStop(int stop) { 

 this.stop = stop; 

} 

D.7.4 Homing controller process 

The homing process steers the joint to its centre position. Subsequently, 
the motors are turned off. The CSP diagram in Figure 6-23 and Figure 
6-24 is coded in Listing D-22. 

HomingHorizontal::HomingHorizontal(ChannelIn<double> *feedback,  

 ChannelOut<double> *control, ChannelIn<double> *leftmax,  

 ChannelIn<double> *rightmax) { 

 

 //--- create variable channels 

 setpoint_ = new ChannelVar<double>(0.0); 

 stop_ = new ChannelVar<double>; 

 

 //--- create channel-input array and a channel-output array 

 this->chanin  = new ChannelIn<double> * [4]; 

 this->chanout = new ChannelOut<double> * [2]; 

 chanin[0]  = leftmax; 

 chanin[1]  = rightmax; 

 chanin[2]  = feedback; 

 chanin[3]  = setpoint_; 

 chanout[0] = stop_; 

 chanout[1] = control; 

 

 //--- create the 20-process 

 homingHorizontal = new PositionControllerHorizontal20Process( 

   chanin, chanout); 

} 

 

void HomingHorizontal::run(void) { 

 double zero = 0.0; 

 do { 
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  homingHorizontal->run(); 

  stop_->read(&stop); 

 } while (!stop); 

 //--- release output by setting to zero 

 control->write(&zero); 

} 

 

HomingHorizontal::~HomingHorizontal() { 

 ...destruct all objects and processes 

} 

Listing D-22 Constructor and run body of homing process. 

Here, setpoint and stop are variables passed as channels (respectively 
named setpoint_ and stop_) to the homingHorizontal process. 

 





 

A P P E N D I X E 

Alting 
E Alting 

E.1 Introduction 
The word alting is frequently used as a verb representing the operation of 
the alternative process. The processes that are connected to the 
alternative process via a separate channel are called alting processes. The 
alternative process chooses one guarded process out of many guarded 
processes that can communicate via a channel with its alting process. On 
two or more alting processes that are willing to communicate with 
guarded processes, the alternative process will select one guarded 
process that is able to commit in communication. In software, the choice 
or the decision policy is prioritized. 

The decision policy, semantics, and properties of alting for real-time 
systems are discussed in this appendix. In Section E.2 the notion of fair 
alting is analyzed and illustrates the decision policy. Section E.4 
discusses the semantics of preference alting in contrast to resolute alting. 
Preference alting allows for optimal performance between compositions 
of ALT/PRIALT and PAR/PRIPAR. 

E.2 Fair alting 
In order to understand the fairness of an ALT construct we consider the 
ideal behaviour of a shared any-to-any channel. We will motivate in this 
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appendix that the behaviour of a fair ALT should be equal to the 
behaviour of an any-to-any channel. Reversely, the technique that is used 
to implement an any-to-any channel can be used to implement a fair 
ALT. This shows that the any-to-any channel have lots in common with 
fairly alting and visa versa. This gives confidence that the choice of 
fairness policy and implementation for the ALT (and PRIALT) is a good 
choice. The notion of preference priorities allows us to distinguish 
between an ALT and a PRIALT in a reasonable way that is intuitive for 
software engineering. 

E.3 Any-to-any channel 
An any-to-any channel is a CSP channel that can be safely used by 
multiple reader processes and multiple writer processes. Only one pair of 
reader and writer can communicate one at the time. 

Multiple writers or readers should claim their peer-end of the any-to-any 
channel in a fair fashion according to a mixed policy of a first-come-first-
served policy between equally-prioritized processes and a highest-
priority-first policy between unequally-prioritized processes. We 
consider it fair that a process of higher priority should be served before a 
process with a lower priority.  

A semaphore construct with a prioritized queue according to the above 
mention policies at the peer-end of a channel can fairly synchronize 
between multiple processes and takes their prioritized parallel 
relationships into account. The implementation of a prioritized queuing 
mechanism is not difficult. The mixed policy and implementation of a 
semaphore is the same to the behaviour and implementing of the fair 
ALT.  

The any-to-any channel can be described by two alternative processes. 
For example, consider an any-to-any channel c with at one end three 
writer processes P, Q, and S, and at the other end three reader processes 
X, Y, and Z. It may be obvious that the above described mixed policy a 
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fair selection between pairs of a writer and reader processes. This system 
can be described as 

{ }.c T
SYSTEM W R=  with W P Q S=  and R X Y Z= . 

where all processes are willing to communicate over channel c. The 
processes are defined as follows 

1

2

3

! '
! '
! '

P c a P

Q c a Q

S c a S

= →
= →
= →

   and   
? '( )
? '( )
? '( )
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Z c z Z z
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Process R can be described by a choice construct instead of a parallel 
construct of multiple reader processes. 
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Process W can be described by a choice construct instead of a parallel 
construct of multiple writer processes. 
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The choice between the processes is arbitrary and allows for input guards 
and output guards. In practice, an input guard and output guard will 
never meet each other and the choice is prioritized to ensure fairness or 
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unfairness. The notion of preference priorities is the most appropriate 
solution. 

Fairly alting on a any-to-any channel 

The alting policy between alting processes with equally-prioritized 
parallel relationships should based on their arrival time, as in 

( ) ( ) ( ){ }a ba V a V b W t t→ → → ∧ <  

Here, ta and tb are timestamp of the alting processes willing to engage in 
respectively event a and b.  

In case of an any-to-any channel there should be a fair selection between 
the multiple readers and a fair selection between the multiple writers. 
For example, Q is willing to communicate before P and P is willing to 
communicate before S then this equals: 

( )( )( )( )2 1 3! ' ! ' ! 'c a Q c a P c a S→ → →  

At the reader side of the any-to-any channel, consider Z is willing to 
communicate before X and X is willing to communicate before Y. This 
equals: 

( )( )( )( )? '( ) ? '( ) ? '( )c z Z z c x X x c y Y y→ → →  

Consequently, SYSTEM will behave as 
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After a1, a2, and a3, have been offered then SYSTEM continues as: 

( ) ( )2 1 3
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SYSTEM Q P S Z a X a Y a=  
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If we take the prioritized parallel relationships between processes into 
account then we apply the following refinement: 

Two threads that claim a channel a (i.e. one at the reader side and one at 
the writer side of the channel) participate in one communication event a. 
Property a.thread is one of the two threads with the highest priority (i.e. 
lowest a.thread.priority)  which is defined as 

a.thread=
1 2

1
1 2

. . . . ;
.

; , ;

a thread priority a thread priority
a thread

priority thread thread THREAD a

≤⎧ ⎫
⎨ ⎬∈ ∈ ∈∑⎩ ⎭

 

The priority values are assigned to threadi.priority by the equally-
prioritized and unequally-prioritized parallel relationships between 
processes. 

The function pri(a) returns the priority index of the executing thread with 
the highest priority engaging in communication event a. Function pri(a) is 
defined as 

. . ;
( ) . . , ;

;

b maxpriority b thread priority

pri a maxpriority a thread priority maxpriority priority

thread THREAD a

⎧ ⎫∀ ∈∑• ≥
⎪ ⎪= − ∈⎨ ⎬
⎪ ⎪∈ ∈∑⎩ ⎭

 

with THREAD as the non-empty set of all threads and Σ as the set of all 
communication events. The constant maxpriority is the highest priority 
value (i.e. the lowest priority) in the set of possible events. Here, 
maxpriority can be equal to the total of prioritized parallel relationships + 
1. 

The comparison of priorities between two events a and b in a (equally-
prioritized) parallel relationship of processes, executing at equal 
priorities, is defined as 

( )
. . . .

( ) ( ) ; ,
. .

a thread priority b thread priority
pri a pri b a b a b

a thread b thread a b

⎧ ⎫= ∧⎛ ⎞⎪ ⎪= ∨ = ∈∑⎨ ⎬⎜ ⎟≠ ∧ ≠⎝ ⎠⎪ ⎪⎩ ⎭
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The comparison of priorities between two events a and b in a (unequally) 
prioritized parallel relationship of processes, executing at different 
priorities, is defined as 

. . . .
( ) ( ) ; ,

. .
a thread priority b thread priority

pri a pri b a b
a thread b thread a b

⎧ ⎫< ∧⎛ ⎞⎪ ⎪> ∈∑⎨ ⎬⎜ ⎟≠ ∧ ≠⎝ ⎠⎪ ⎪⎩ ⎭
 

A fair ALT is a preference ALT with operator , which semantics is 
defined as 

( ) ( ) ( )
( ) ( )
( )( ) ( )

( ) ( )
a b

a P b Q

a P b Q a P t t pri a pri b

pri a pri b

⎧ ⎫→ → ∧
⎪ ⎪

→ → ⇒ → ⎛ ⎞< ∧ = ∨⎨ ⎬
⎜ ⎟⎪ ⎪>⎝ ⎠⎩ ⎭

 

The occurrence times ta and tb of the events a and b in a deterministic 
environment can never be the same, thus ta ≠ tb. Preference ALT  is a 
refinement of a deterministic . 

Operator  is the prioritized version of , which is a possible valid 
refinement for . The semantics of  is defined as 

( ) ( ) ( ) ( ) ( )
( ) ( )

a P b Q
a P b Q a P

pri a pri b

⎧ ⎫→ → ∧⎪ ⎪→ → ⇒ →⎨ ⎬
≥⎪ ⎪⎩ ⎭

 

and 

( ) ( ) ( ) ( ) ( )
( ) ( )

a P b Q
a P b Q b Q

pri a pri b

⎧ ⎫→ → ∧⎪ ⎪→ → ⇒ →⎨ ⎬
<⎪ ⎪⎩ ⎭

 

These preference choice operators  and  are further discussed in 
Section E.4. 
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E.4 Semantics of alting 
In the previous section the semantics of the preference choice operators 
have been discussed. In this section these semantics are put in contrast to 
the classical choice operators. Particularly, the definitions and properties 
of resolute and preference alting are described. The semantics of 
preference alting given in this section is a wish list of behaviour that is 
most applicable for software engineering. Preference alting is an 
extension of the semantics of resolute alting. This behaviour provides an 
optimal scheduling policy that is adaptive to the presence of surrounding 
prioritized parallel relationships between processes. Preference alting 
and any-to-any channels share similar properties, desired behaviours, 
and consequently a similar implementation.  

Definitions of alting 

The (symmetric) choice operator  is defined in the following manner: 

( ) ( ): ( ) : ( ) : ( )
def

x A P x y B Q y z A B R z→ → = ∪ →  

where 

 R(z) = P(z)  if z ∈ A - B 

  = Q(z)  if z ∈ B - A 

  = P(z)  Q(z) if z ∈ A ∩ B 

If the first event offered by P and Q are disjoint, the new process behaves 
according to ordinary choice ‘|’, otherwise according to the internal 
choice operator  that is characterized by the fact that the environment 
cannot influence the choice between the processes P(z) and Q(z). The 
process P(z)  Q(z) behaves either as P(z) or as Q(z). The choice between 
them is made internally and, therefore, it is not possible to predict which 
one of the process P(z) or  Q(z) may emerge from P(z)  Q(z). The non-
deterministic behaviour of process P(z)  Q(z) is impossible to realize in a 
deterministic environment, say on a sequential processor. 
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We introduce the resolute choice operators  and  which are 
deterministic versions of the theoretical choice operator . Both resolute 
choice operators are respectively equally-prioritized and unequally-
prioritized. 

The operator  is defined in the following manner: 

( ) ( ): ( ) : ( ) : ( )
def

x A P x y B Q y z A B R z→ → = ∪ →  

where 

 R(z) = P(z) and i=1   if z ∈ A - B 

  = Q(z) and i=0   if z ∈ B - A 

  = 

if ( =0) ( )

if ( =1) ( )
 = ( +1) modulo 2

i P z

i Q z

i i

⎫
⎪
⎬
⎪
⎭

 if z ∈ A ∩ B 

with i ∈  and i is initially 0. 

The (asymmetric) choice operator  is a particular implementation of the 
 operator; similarly the  is a different implementation of . These 

resolute choice operators are restricted in that they do not allow 
propagation of priority over events. The operator  is defined in the 
following manner: 

( ) ( ): ( ) : ( ) : ( )
def

x A P x y B Q y z A B R z→ → = ∪ →  

where 

 R(z) = P(z) if z ∈ A - B 

  = Q(z) if z ∈ B - A 

  = P(z) if z ∈ A ∩ B 

The preference symmetric and asymmetric choices are denoted by 
respectively the operators  and , which must know the priorities of 
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the alting processes that are committed in communication with the 
alternative process. If we refer to the priority of a process we mean 
implicitly the priority of the thread of control that performs event 
handling within a process. This property holds for a process which has 
no knowledge about its priority. These definitions allow propagation of 
priorities over events. 

The operator  is defined in the following manner: 

( ) ( ): ( ) : ( ) : ( )
def

x A P x y B Q y z A B R z→ → = ∪ →  

where 

 R(z) = P(z) if z ∈ A - B 

  = Q(z) if z ∈ B - A 

  = P(z) if z ∈ A ∩ B and pri(x) > pri(y) 

  = Q(z) if z ∈ A ∩ B and pri(x) < pri(y) 

  = P(z) if z ∈ A ∩ B and pri(x) = pri(y) and ta < tb 

  = Q(z) if z ∈ A ∩ B and pri(x) = pri(y) and ta > tb 

The operator  is defined as 

( ) ( ): ( ) : ( ) : ( )
def

x A P x y B Q y z A B R z→ → = ∪ →  

where 

 R(z) = P(z) if z ∈ A - B 

  = Q(z) if z ∈ B - A 

  = P(z) if z ∈ A ∩ B and pri(x) > pri(y) 

  = Q(z) if z ∈ A ∩ B and pri(x) < pri(y) 

  = P(z) if z ∈ A ∩ B and pri(x) = pri(y)  
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E.5 Properties of alting 
In this section we will give some properties of alting for the operators , 

, , ,  and . On the basis of these properties we can observe some 
constructive parallels. Preference alting offers a great deal of fairness and 
allows propagation of external priorities over events. 

The operator  is idempotent, commutative and associative. 

( ) ( ) ( )a A a A a A→ → = →  <idempotent> 

( ) ( ) ( ) ( )a A b B b B a A→ → = → →  <commutative> 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )a A b B c C a A b B c C→ → → = → → →  <associative> 

Operator  is idempotent and associative, but not commutative. 

( ) ( ) ( )a A a A a A→ → = →  <idempotent> 

( ) ( ) ( ) ( )a A b B b B a A→ → ≠ → →  <not commutative> 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )a A b B c C a A b B c C→ → → = → → →  <associative> 

Although the operator  is commutative it is not surprising that operator  
 is not commutative, because  is uni-directive and  is bi-directive.  

Operator  is idempotent, associative and partially commutative. 

( ) ( ) ( )a A a A a A→ → = →  <idempotent> 

( ) ( ) ( ) ( )a A b B b B a A→ → ≈ → →  <partially commutative> 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )a A b B c C a A b B c C→ → → = → → →  <associative> 

Operator  is partially commutative. If both events a and b are ready 
then ( ) ( )a A b B→ →  will initially select process ( )a A→  and 
( ) ( )b B a A→ →  will initially select ( )b B→ . This is because by the fact 
that the search for ready guards starts at 0. The  is not entirely equal to 

 with respect to this property. 
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Operator  is idempotent and associative, but not commutative. 

( ) ( ) ( )a A a A a A→ → = →  <idempotent> 

( ) ( ) ( ) ( )a A b B b B a A→ → ≠ → →  <not commutative> 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )a A b B c C a A b B c C→ → → = → → →  <associative> 

Operator  is not commutative. If both events a and b are ready then the 
left-side process will be selected. This is equivalent to . 

Operator  is idempotent, commutative and associative, and thus its 
properties are equal to the  operator. 

( ) ( ) ( )a A a A a A→ → = →  <idempotent> 

( ) ( ) ( ) ( )a A b B b B a A→ → = → →  <commutative> 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )a A b B c C a A b B c C→ → → = → → →  <associative> 

Operator  is idempotent, associative and partially commutative. 

( ) ( ) ( )a A a A a A→ → = →  <idempotent> 

( ) ( ) ( ) ( ) for ( ) ( )a A b B b B a A pri a pri b→ → = → → ≠  <commutative> 

( ) ( ) ( ) ( ) for ( ) ( )a A b B b B a A pri a pri b→ → ≠ → → =  <not commutative> 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )a A b B c C a A b B c C→ → → = → → →  <associative> 

If pri(a) = pri(b) then the preference choice operator shows similarities 
with the resolute choice operator:  

{ }( ) ( )| ( ) ( ) ( ) ( )
stat

a A b B pri a pri b a A b B→ → = ⇔ → →  

{ }( ) ( )| ( ) ( ) ( ) ( )a A b B pri a pri b a A b B→ → = ⇔ → →  

The first is based on a cyclic-indexing policy. The left hand-side and right 
hand-side are statistically equivalent, but can differ in the first choice. 
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The second is based on a first-come-first-served policy, which left hand-
side and right hand-side are equivalent. 

If pri(a) ≠ pri(b) then the preference symmetric choice operator shows 
similarities with the preference asymmetric choice operator: 

( ) ( ){ }
( ) ( ){ }
( ) ( ){ }

( ) ( )

( ) ( )

( ) ( )

a A b B pri a pri b

a A b B pri a pri b

b B a A pri a pri b

→ → ≠ ⇔

→ → ≠ ⇔

→ → ≠

 

Any difference in priority, e.g. pri(a) < pri(b), turns the preference 
asymmetric choice operator into a specific resolute asymmetric choice 
operator: 

( ) ( ){ }
( ) ( ){ }

( ) ( ) ( )

( ) ( )

( ) ( )

a A b B pri a pri b

b B a A pri a pri b

b B a A b B

→ → < ⇔

→ → < ⇔

→ → = →

 

when both a and b are offered. 
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F Solving priority conflicts with buffered channels 

F.1 Introduction 
Communication with unbuffered data channels between higher-priority 
processes and lower-priority processes can cause priority inversion 
problems. The effect is that a higher-priority process, which gets blocked 
on a data channel while waiting for a lower-priority process to read from 
the data channel, will be pulled down to the priority of the lower-priority 
process. This is in disagreement with the prioritized parallel relationship. 
The result is a performance penalty that can cause the higher-priority 
process not to meet its deadline. This problem is due to a priority conflict 
in the design. 

In Section 512.5.0, a technique is described for finding priority conflicts in 
CSP diagrams. In this appendix, this technique is used to show that a 
design that is not priority conflict-free, as a result of a data channel, can 
become priority conflict-free by using a buffered data channel. The 
technique is applicable for complex patterns. 
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F.2 Buffered data channels solve 
priority conflicts 

Figure F-1a shows two communicating processes P1 and P2 via 
rendezvous data channel c. Process P1 is executed at a higher priority 
than P2 and process P3 is executed with a priority somewhere in the 
middle. We assume that process P3 will repeatedly wait on its channel 
otherwise P2 will never be executed and this model makes no sense. 
Process P3 can hold P2 from executing and process P1 will not be served 
by P2. It is likely that process P1 can not meet its deadline due to P3 
claiming the CPU. This priority inversion problem can be solved when a 
sub-sampling buffered process is used that decouples P1 from P2. Such a 
buffer process is depicted in Figure F-1b. A sub-sampling buffered data 
channel can replace the buffer process Buf and channels a and b which 
makes the diagram as simple as in Figure F-1b. This example is described 
in Section 5.4. 

 

Figure F-1 Priority conflict cause and solution: 
(a) Priority inversion problem caused by channel a, 
(b) Solution via a buffer process.. 

In Figure F-1b, the data channels are labelled a and b, which also identify 
their communication events. The communication event a and b are 
alternating or in sequence, but they cannot happen at the same time. 
When a and b are alternating then the priority conflict should be check on 
engagement in a and in b. The buffer process Buf should not be full 

P3 

P1 

P2 

(b) (a) 

Buf 

a 

b 

P3 

P1 

P2 

a 
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otherwise it will be blocking P1. We assume that Buf describes a sub-
sampling buffer that can never become full. 

 

Figure F-2 Proof of priority conflict-free using buffered 
communication: 
(a) communication process on channel a shows that the 
model is priority conflict-free 
(b) communication process on channel b shows that the 
model is priority conflict-free 
(c) communication process on a and b (in sequence) 
shows that the model is not priority conflict-free. 

Figure F-2a shows the engagement in a. Processes P1 and Buf form 
communication process Q at the instance of communication. Event b 
cannot occur at the same instance in time as event a and thus priority 
inversion problem does not apply on b. Channel b does not block P1 and 
so b does not require buffering. We can omit b. All unequally-prioritized 
parallel relationships do not point in one direction of a cycle. Therefore, 
we conclude that this scenario is priority conflict-free. 

Figure F-2b shows the engagement in b. Processes Buf and P2 form 
communication process R. Similarly, event a cannot happen at the same 
instance of time as event b. At least one unequally-prioritized parallel 
relationship points in the opposite direction on the cycle. Thus, this 
scenario is priority conflict-free. 

In case the buffer is a FIFO type of buffer and reaches its full state then 
the buffer will be blocking P1 and the priority inversion problem rises. In 
this case, the scenario of communication events is sequential: first b then 

 
 

 

(a) (b) 

P3 

P1 

P2 
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b 
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P2 

Buf 
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b 
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R 
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a. This sequential communication comprises a single communication 
process. Figure F-2c shows that this causes a priority conflict since the 
unequally-prioritized parallel relationships point in one direction on the 
cycle between S and P3. 

Therefore it is important that the buffer does not reach the full state. 
Overwriting (or sub-sampling) is an important property of the buffered 
data channel to avoid the priority inversion problem. 

In case the channel is directed from P2 to P1 a similar proof can be given 
as described above and a super-sampling buffered channel is essential. 
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G Compositional analysis rule 

G.1 Introduction 
In this appendix, a compositional analysis rule is described that is useful for 
analyzing compositional CSP constructs, such as 

• determining operators on hidden interrelationships derived 
from user-specified paths of relationships, 

• writing ambiguous or unambiguous algebraic expressions, 

• detecting specification conflicts. 

The compositional analysis rule applies to triangular cycles in 
compositional diagrams. 

G.2 Triangular cycles 
A triangular cycle consists of three processes that are completely 
connected, e.g. every process is connected to each other process. Every 
pair of processes is connected by either a user-specified interrelationships 
or by hidden interrelationships. 

For example, three processes on a user-specified path are part of a 
triangular cycle that is closed by a hidden interrelationship between the 
outer processes. See Figure G-1. The black lines are user-specified 
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interrelationships and the grey line is the visualized hidden 
interrelationship. The operator on the hidden interrelationship needs to 
be determined in order to make the composition unambiguous. 

 

Figure G-1 Triangular cycle with one hidden interrelationship. 

Let operator ⊕
PQ  represent a binary CSP operator between P and Q and ⊕

PQ  
its complement. 

For each pair ( ),⊕ ⊕
PQ PQ

 applies  

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }, , , , , , , , , , , ,⊕ ⊕ ∈ ← → Δ Δ
PQ PQ

 

Operators are distinguished by their identifier below the symbol. The 
operator being inverted holds the same identifier. This way, operators 
can be distinguished by their identifiers, as in Figure G-1. 

These operators are directional commutative 

⊕ = ⊕
PQ PQ

P Q Q P  

For example, P Q = Q P, P Q = Q P, P→Q = Q←P, P Q = Q P, P Q 
= Q P, and P Δ Q = Q Δ P. 

The number of the maximal hidden interrelationships between processes 
on a path of processes connected by first-order interrelationships is 

1
( 3) 1 1

2
n n with n− + ≥  

P U Q 

 
PU
⊕   

 
PQ
⊕   

 ⊕
UQ
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Triangular cycles are closed by these hidden interrelationships. Thus, the 
total number of triangular cycles in a CSP diagram of 3 or more processes 
is determined by the same formula. 

The operators on the user-specified interrelationship determine whether 
the operator on the hidden interrelationship can be uniquely determined 
(derived) or whether it can be randomly selected. In the latter case the 
design is ambiguous; i.e. the tool can choose one of many operators that 
are valid (specification conflict-free). An ambiguous triangular cycle can 
be expressed by a set of algebraic expressions, or by a single ambiguous 
algebraic expression. 

G.3 Compositional Analysis Rule 
The compositional analysis rule applies to triangular cycles for which all 
operators are known, either specified by the user, derived, or randomly 
selected. In case an operator is a choice of one in a set of operators, this 
rule can determine which choices are valid in the process architecture. 
The rule returns an algebraic expression or it returns a specification 
conflict in case an algebraic expression does not exist. 
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The compositional analysis rule is specified as follows: 

{ } ( )

{ }

( )

, , , , , , , , ,

( : )

,

( : )

( : )

PU UQ PQ PQ PU

PQ PU UQ

PU UQ PU UQ

PQ PU PQ UQ

if and then P Q U

note ambiguous solution
else

if then

if then P U Q
note unambiguous solution

else

if then P U Q

note unambiguous solution
e

⊕ = ⊕ ⊕ ∈ → ← Δ Δ ⊕ ⊕

⊕ ∈ ⊕ ⊕

⊕ = ⊕ ⊕ ⊕

⊕ = ⊕ ⊕ ⊕

( )
( : )

 -

PQ UQ PU PQ

lse
if then P U Q

note unambiguous solution
else

not conflict free

⊕ = ⊕ ⊕ ⊕

 

A compressed triangular cycle results in a compressed algebraic 
expression. The compressed algebraic expression can be expanded by 
substituting sub-processes with their algebraic expressions. Of course, no 
algebraic expression can be completed in case a sub-process is in a 
specification conflict. The specification conflict needs to be solved by 
selecting or specifying another valid operator that results in a 
specification conflict-free diagram. 
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H Pass-by-reference versus pass-by-value 

H.1 Pass-by-reference 
Pass-by-reference is a default concept in object-oriented programming 
languages for passing objects between objects. This mechanism is fast 
and dynamic, but at the same time it can be unsafe when passing 
references between objects with multiple threads of control. Multiple 
writers and readers that are allowed to access shared objects at the same 
time and in an unsynchronized way can easily corrupt the content of the 
shared object due to a race hazard. Shared objects must be synchronized 
to prevent race hazards. These precautions illustrate that multithreading 
is not orthogonal to objects but is intertwined with objects. 

The sender process releases its ownership of the object after passing the 
reference through the channel. The receiver process will become the new 
owner of the object. If necessary, the receiver can pass the reference to 
object back to the sender which again claims ownership.  

Since Java supports aliases (multiple references to objects) the Java 
compiler does not check for ownerships. Thus, passing references in Java 
can cause unsafe situations and it is up to the programmer to apply the 
rule of ownership to guarantee safety. If Java had a notion of channel 
primitives then this information could be used by the compiler to check 
for ownership which would make concurrency in Java a lot safer. 
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A problem with sending references over channels is that this only works 
on shared memory systems and pass-by-value is required between 
distributed memory systems. Channels with a pass-by-reference 
mechanism must create a clone (at the receiver side) and the reference to 
that newly created object must be returned to the receiving process. Java 
supports cloning and the garbage collector deletes unreferenced objects. 
Cloning and garbage collection seem to be useful for business 
applications with lots of resources available, but they are time-
consuming and non-deterministic which makes them unpopular for 
embedded real-time systems with limited resources and strict timing 
requirements. 

H.2 Pass-by-value 
Pass-by-value is default for occam channels and default for primitive 
data types in Java. The producer passes the data (content) of the message 
object instead of its reference. The data of the source object will be copied 
in the (pre-allocated) destination object at the receiver side. Each process 
has a copy to work with, without the overhead of synchronization. The 
ownership rule is implicit to the pass-by-value mechanism. The pass-by-
value mechanism is identical for shared memory systems and for 
distributed memory systems. Objects can be efficiently reused without 
continuously creating and destroying objects. This mechanism works for 
programming languages without cloning and garbage collection as for C 
and C++. 

A problem with pass-by-value on shared memory systems is that the 
overhead of communication can be high for objects that are larger than 
the size of the reference (pointer, hash-code). The problem is less 
significant when objects are small and communication is at a low 
frequency. Pass-by-reference can also be implemented with pass-by-
value. In this case, the message object is a container holding a reference 
to another object. On communication the reference to the object will be 
copied. This inherits all advantages and disadvantages of pass-by-
reference and requires the help of an object container. Deep copying (i.e. 
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recursively copying inner objects) can also be part of the mechanism, but 
then one must avoid cyclic references. 

H.3 Message passing for control 
software 

Control software favours deterministic behaviour, small packaged 
communication, and transparency between shared memory systems and 
distributed memory systems. Pass-by-value fulfils these requirements. 
As long as small objects are passed, the pass-by-value has advantages 
over pass-by-reference. On these grounds the pass-by-value mechanism 
and data channels are commonly used for control software. 

The performance of pass-by-reference and pass-by-value not only 
depend on the size of message but also depend on the overall performance 
of the hardware and software architecture. The architecture determines 
how frequent objects are passed and how often memory must be 
allocated/destroyed or can be reused. In most CSP-based applications 
one does not share objects other than channel- and barrier-objects. 
Sharing objects between processes is rare. The alternative of sharing an 
object is that the object is part and under control of a server process that 
is connected with shared channels to its clients. The client processes 
synchronize on channels or barriers and follows a protocol of interaction 
with the server process. This is thread-safe and the server process 
provides a clear behavioural description. 

 





 

Notation 

a X∈  set membership, a is an element in set X 

X Y⊆  X is a subset of Y (= .a a X a Y∀ ∈ ⇒ ∈ ) 

{ }, ,a b c  set with elements a, b, and c 

{} ,∅  the empty set 

X Y∪  union 

X Y∩  intersection 

X Y−  difference (= { }|a X x Y∈ ∉ ) 

 natural numbers (= { }0,1,2,... ) 

\{0} natural numbers without 0 (= { }1,2,... ) 

e P→  prefixing 

? :x A P→  prefix choice 

P Q→  single action transition 

P Q⊕  arbitrary composition 

;P Q  sequential composition 

P Q  synchronous parallel 

X YP Q  alphabetic parallel 

X
P Q  generalized parallel 

P Q⏐⏐⏐  interleaving 
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P Q  prioritized synchronous parallel 

P Q  internal or nondeterministic choice 

P Q  external choice 

P Q  unequally-prioritized external choice 

P Q  resolute equally-prioritized external choice 

P Q  resolute unequally-prioritized external choice 

P Q  preference equally-prioritized external choice 

P Q  preference unequally-prioritized external choice 

iP QΔ  interrupt composition on event i 

P QΔ  exception composition 

\P X  hiding 

P cond Q  P if cond is true else Q 

 the empty sequence 

1,..., na a  trace of events containing a1,..,an in that order 

^s a  concatenation of a to trace s 

( ), ,P Q ⊕  relationship with ⊕ , from P to Q 

( ), ,P Q ⊕  relationship with ⊕ , from Q to P 

( ), ,P Q ∅⊕  relationship with ⊕ , from P to Q,  
with P and Q being neighbours 

PQ
⊕  operator between P and Q, from P to Q 

PQ
⊕  inverse operator between P and Q, from P to Q 

Σ  alphabet of all communications 

 termination event 
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. :process id Type  compound identifier label 

?c x  input x from channel c 

!c y  output y to channel c 

*b  synchronize on barrier b 

*P  infinite recursion 

. ;X P Xμ  recursion 

( )pri a  function that returns the priority index of the 
thread with the highest priority engaging in 
communication event a. 
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